Math, asked by sound1109, 10 months ago

sum of digits of a 2 digit number is 9. if the digits are reversed, the new number is 9 less than 3 times the original number. find the original number​

Answers

Answered by Anonymous
24

SOLUTION:-

Given:

•Sum of digits of a two number is 9.If the digits are reversed, the new number is 9 less than 3 times the original number.

To find:

The original number.

Explanation:

Let the digit of ones place be R.

Let the digit of tens place be M.

  • Original Number=10R + M
  • Reversed number=10M+ R

According to the question:

R + M= 9

R=9 - M..............(1)

=) 10M +R -9 = 3(10R +M)

=) 10M + R -9 = 30R + 3M

=) 10M -3M+ R -30R= 9

=) 7M -29R= 9

=) 7M - 29(9 - M) =9 [Using equation (1)]

=) 7M - 261+ 29M =9

=) 36M -261 =9

=) 36M = 9 +261

=) 36M = 270

=) M= 270/36

=) M= 7.5

&

Putting the vakue of M in equation (1), we get;

R= 9 - 7.5

R= 1.5

Thus,

The original number: 10R + M

=) 10(1.5) + 7.5

=) 15 + 7.5

=) 22.5

Answered by haseenferoze
4

Answer:

Original number is 27.

Step-by-step explanation:

Since we know that the sum of the two digits in the original number and  the new number is 9 , we can write the original number and the new number as :-

                               Tens               Ones          

Original Number    9 - x                x                  

New number          x                      9 - x

Now that we found out the tens and ones place , we can multiply the digit in the tens place with ten and add it with the digit in the ones place.

Original number = 10(9 - x) + x

                           = 90 - 10x + x

                           =90 - 9x

New number = 10(x) + 9 - x

                      = 10x + 9 - x

                      = 9x + 9

Now that we know that original number = 90 - 9x ,                                       and the new number =  9x + 9 ,

we can understand what "x" is .The question says that the new number is 9 less than 3 times the original number .So we can phrase it like this :-

9x + 9 = 3(90 - 9x) - 9

9x + 9 = 270 - 27x - 9

9x + 9 = 261 - 27x

Now we transpose ,

9x + 9 = 261 - 27x

9x + 27x = 261 - 9

36x = 252

x = 252/36

x = 7

We have found that x = 7 ,

But the question is to find the original number , so now that we now the value of "x" ,                                                                                                    

the original number = 90 - 9x

                                  = 90 - 9(7)

                                  = 90 - 63

                                  = 27

Therefore the original number is 27

:)

   

Similar questions