Math, asked by kchandraxp5200, 11 months ago

sum of digits of two digit number is 11 the given number is less than number obtained by interchanging digits by 9 find number​

Answers

Answered by ShírIey
135

AnswEr:

\mathsf{Let\:us\: Consider\:that\:the\: Digit\; Ten's\:place\;be\:x}

\sf{And,\:Ones\: place\:y}

\sf{Two\: Digit\; Number\:is:-}

:\implies\sf\: 10x + y

\sf{Sum\:of\; Digits\:two\: Number\;is\;11\:\red{[Given]}}

\bigstar\bold{\underline{\sf{According\:to\: Question\: Now,}}}

:\implies\sf\: x + y = 11 ---------[Equation 1]

:\implies\sf\: xy\:is \:less\:than\; yx\:by\:9

:\implies\sf\: xy + 9 = yx

:\implies\sf\: 10x + y = 10y + x - 9

:\implies\sf\: 9x - 9y =-9

:\implies\sf\: x - y = -1 ----------[Equation 2]

\rule{120}2

\:\:\:\:\;\:\:\:\:\:\:\dag\:\footnotesize\bold{\underline{\underline{\sf{\purple{[From \: Equations\: (1) \:\&(2)]}}}}}

:\implies\sf\: x \: \cancel{+ y} = 11

:\implies\sf\: x \: \cancel {- y} = -1

:\implies\sf\: 2x = 10

:\implies\sf\: x = \dfrac{10}{2}

:\implies\small{\underline{\boxed{\sf{\red{x\:=\:5}}}}}

\sf{Substituting\:the\:Value\:of\:x\; in\: Equation\:(2)}

:\implies\sf\: x - y = - 1

:\implies\sf\: 5 - y = - 1

:\implies\sf\: y = 5 + 1

:\implies\small{\underline{\boxed{\sf{\red{y\:=\:6}}}}}

\sf{Now,\; Finding\: Number:-}

:\implies\sf\: 10 x + y

:\implies\sf\: 10(5)+ 6

:\implies\sf\: 50 + 6

:\implies\large\boxed{\sf{\purple{56}}}

\bold{\underline{\sf{Hence,\:The\; \: Original \: Number\: is\: 56.}}}

Answered by Anonymous
30

Solution :

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

Sum of digits of two number is 11, the given number is less than number obtained by interchange digits by 9.

\bf{\red{\underline{\underline{\bf{To\:find\::}}}}}

The number.

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

Let the ten's digit number be r

Let the one's digit number be m

\underline{\sf{The\:Original\:number=10r+m}}}}\\\underline{\sf{The\:Reversed\:number=10m+r}}}}

So;

\mapsto\sf{r+m=11}\\\\\mapsto\bf{r=11-m........................(1)}

A/q

\mapsto\sf{10r+m=10m+r-9}\\\\\mapsto\sf{10r-r+m-10m=-9}\\\\\mapsto\sf{9r-9m=-9}\\\\\mapsto\sf{9(r-m)=-9}\\\\\mapsto\sf{r-m=\cancel{\dfrac{-9}{9} }}\\\\\mapsto\sf{r-m=-1}\\\\\mapsto\sf{11-m-m=-1\:\:\:\:\:\:[from(1)]}\\\\\mapsto\sf{11-2m=-1}\\\\\mapsto\sf{-2m=-1-11}\\\\\mapsto\sf{-2m=-12}\\\\\mapsto\sf{m=\cancel{\dfrac{-12}{-2} }}\\\\\mapsto\sf{\red{m=6}}

Putting the value of m in equation (1),we get;

\mapsto\sf{r=11-6}\\\\\mapsto\sf{\red{r=5}}

Thus;

The original number = 10r + m

The original number = 10(5) + 6

The original number = 50 + 6 = 56

Similar questions