Math, asked by premsinghdhaliwal08, 10 months ago

sum of digits of two digit number is 9.When the digits are interchanged the new number is greater than the original number by 9.Find the original number.​

Answers

Answered by Anonymous
38

Given :

  • Sum of digits of two digit number is 9.
  • When the digits are interchanged the new number is greater than the original number by 9.

To Find :

  • The original number.

Solution :

Let the digit at the tens place be x.

Let the digit at the units place be y.

Original Number = (10x + y)

Case 1 :

The sum of tens digit and units digit is 9.

Equation :

\implies \sf{x+y=9}

\sf{x=9-y\:\:\:\:\bold{1}}

Case 2 :

When the digits of the two digit number are interchanged, the new number is greater than original number by 9.

Reversed Number = (10y +x)

Equation :

\implies \sf{10y+x=10x+y+9}

\implies \sf{10y-y=10x-x+9}

\implies \sf{9y=9x+9}

\implies \sf{9x+9=9y}

\implies \sf{9x-9y=-9}

\implies \sf{9(9-y) -9y=-9}

\implies \sf{81-9y-9y=-9}

\implies \sf{-18y=-9-81}

\implies \sf{-18y=-90}

\implies \sf{y=\dfrac{-90}{-18}}

\implies\sf{y=\dfrac{90}{18}}

\implies \sf{y=5}

Substitute, y = 5 in equation (1),

\implies \sf{x=9-y}

\implies \sf{x=9-5}

\implies \sf{x=4}

\large{\boxed{\bold{Ten's\:digit\:=\:x\:=\:4}}}

\large{\boxed{\bold{Unit's\:digit\:=\:y\:=\:5}}}

\large{\boxed{\bold{\purple{Original\:Number\:=\:10x+y=10(4)+5=40+5}}}}

Answered by BrainlyQueen01
29

Answer:

\underline{\boxed{\red{\bf Original \: Number = 45}}}

Step-by-step explanation:

Let the digits at ten's place be x. And, the digit at unit's place be y.

\boxed{\bf Original \: Number = 10x + y}

Also, it is given that the sum of the digits is 9.

⇒ x + y = 9..... (i)

According to the question,

If the digits are interchanged, the new number is greater than the original number by 9.

\implies \sf 10y + x = 10x + y + 9\\\\\implies \sf 10y - y + x - 10x = 9\\\\\implies \sf 9y - 9x = 9\\\\\implies \sf -9(x - y) =9\\\\\implies \sf x - y =- \frac{9}{9}\\\\\implies \sf x - y = - 1 \: \: \:..... (ii)

Adding equation (i) and (ii),

\implies \sf x + y + x - y = 9 - 1\\\\\implies \sf 2x = 8\\\\\implies \sf x =\frac{8}{2}\\\\\boxed{\bf \therefore x = 4}

Substituting the value of x in (i),

\implies \sf x + y = 9 \\\\\implies \sf 4 + y = 9\\\\\implies \sf y = 9-4\\\\\boxed{\therefore \bf y = 5}

Now, Original number = 10x + y

                                     = 10 * 4 + 5

                                     = 40 + 5

                                     = 45

Hence, the required number is 45.

Similar questions