sum of digits of two numbers is 12. the number formed by reversing the digits is 54 greater than the original number. find the original number.
Answers
Answer:
39
Step-by-step explanation:
Let the digits be a and b.
∴ The original number = 10a + b.
Number formed by reversing the digits = a + 10b.
(i) Sum of two numbers is 12:
a + b = 12
(ii) Number formed by reversing the digits is 54 greater than original.
⇒ (a + 10b) = 10a + b + 54
⇒ a + 10b - 10a - b = 54
⇒ -9a + 9b = 54
⇒ a - b = -6
On solving (i) & (ii), we get
⇒ a + b = 12
⇒ a - b = -6
--------------
2a = 6
a = 3
Substitute a = 3 in (ii), we get
⇒ a - b = -6
⇒ 3 - b = -6
⇒ b = 9.
Therefore, the original number is 39.
Hope it helps!
Step-by-step explanation:
let a and b the digit
a+b=12 ........(1)
54+(10a+b)=(10b+a)
54+10a+b=10b+a
9a-9b=-54
a-b=-6........(2)
adding (1) and (2)
a+b=12
a-b=-6
----------
2a=6
a=3
so b=9
39+54=93 (verified)
orig no.=39 and No. when digits reversed=93