Math, asked by AlbinAbraham, 9 months ago

sum of first 25 terms of arithmetic sequence 11 22 33 44...​

Answers

Answered by zakariyys6
2

Answer:

Aslo check in digest

Step-by-step explanation:

a = 11

d = 11

n = 25

Formula to find sum :

Sn = n/2[ 2a + ( n - 1 )×d ]

S25 = 25/2[22 + 24×11]

S25= 25/2 ( 22+ 264)

S25= 25/2 ( 286)

S 25 = 3575

Answered by sinhashweta2013
2

HI  BUDDY  HERE  IS  YOUR  ANSWER.

HOPE  YOU  WILL  LIKE  MY ANSWER.

SO, PLEASE MARK ME AS BRAINLIEST AND I WOULD BE THANKFUL TO YOU FOR THAT:-):?} : ,)

Answer:

Sum of first 25 terms of arithmetic sequence 11 22 33 44...​ is 3575

Step-by-step explanation:

Here,

a₁=11,n=25

d=a₂-a₁

d=22-11=11

We need to find S₂₅ i.e., sum of first 25 terms of arithmetic sequence 11 22 33 44...

According to the formula,

S₂₅= n/2[2a+(n-1)d]

S₂₅= 25/2[(2×11)+(25-1)11]

S₂₅= 25/2[22+(24)×11]

S₂₅= 25/2[22+264]

S₂₅= 25[286] =25×143=3575←ANSWER

            2

                                        THANK  YOU                                      

Similar questions