Math, asked by nikitabaishya18, 4 months ago

Sum of first 7 terms of AP is 49 and that of next 10 terms is 240 , find the sum of first n terms.​

Attachments:

Answers

Answered by Anonymous
1

GIVEN :-

 \\

  • Sum of first 7 terms of A.P is 49.

  • Sum of next 10 terms of the A.P is 240.

 \\  \\

TO FIND :-

 \\

  • Sum of first 'n' terms.

 \\  \\

FORMULA USED :-

 \\  \boxed{ \bf \: s_{(n) =  } \dfrac{n}{2}  \{2a + (n - 1)d \}  } \\

Here ,

  • s(n) = Sum of 'n' terms.
  • n = Number of terms.
  • a = 1st term.
  • d = Common difference.

 \\  \\

SOLUTION :-

 \\

Sum of first 7 terms is 49.

Here ,

  • s(n) = 49
  • n = 7

Putting values in formula , we get...

 \\  \sf \: 49 = \dfrac{7}{2}  \{2a + (7 - 1)d \} \\ \\ \\  \sf \:  \dfrac{49 \times 2}{7}  = 2a + 6d \\ \\ \\  \sf \: 14 = 2a + 6d  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  - (i) \\  \\

Also , sum of next 10 terms is 240.

Hence ,

→ Sum of first 17 terms = sum of 7 terms + sum of next 10 terms

→ Sum of first 17 terms = 49 + 240

Sum of first 17 terms = 289

Here ,

  • s(17) = 289
  • n = 17

Putting values we get...

 \\  \sf \: 289 =  \dfrac{17}{2}  \{2a + (17 - 1)d \} \\ \\ \\  \sf \:  \dfrac{289 \times 2}{17}  = 2a + 16d \\ \\ \\  \sf \: 34 = 2a + 16d \:  \:  \:  \:  \:  \:   \:  \: \:  \:  \:  \:  \:  -  -  - (ii) \\  \\

Subtracting equation (i) by equation (ii) , we get..

 \\  \sf \: 34 - 14 = 2a + 16d - (2a + 6d) \\  \\  \sf \: 20 = 2a + 16d - 2a - 6d \\  \\  \sf \: 20 = 10d \\  \\  \boxed { \sf \:d = 2 } \\  \\

Putting value of d = 2 in equation (i) , we get...

 \\  \sf \: 14 = 2a + 6(2) \\  \\  \sf \: 14 = 2a + 12 \\  \\ \sf \: 14 - 12 = 2a \\  \\  \sf \: 2 = 2a \\  \\  \boxed{ \sf \:a = 1 } \\  \\

Now , we will find sum of first 'n' terms.

 \\  \implies  \sf \:  s_{(n)} =  \dfrac{n}{2} \{2a + (n - 1)d \} \\

Substituting values of 'a' and 'd' we get..

 \\  \implies \sf \:  s_{(n)} =  \dfrac{n}{2}  \{2(1) + (n - 1)2 \} \\ \\ \\   \implies\sf \:  s_{(n)} =  \dfrac{n}{2}  \{2 + 2n - 2 \} \\ \\ \\   \implies\sf \:  s_{(n) } =  \dfrac{n}{ \cancel2}  \{ \cancel{2}  n \} \\ \\ \\  \implies\boxed { \boxed{ \sf \:  s_{(n)}  =  {n}^{2} }} \\  \\

Hence , sum of first 'n' terms is n².

Similar questions