Math, asked by nityam, 1 year ago

sum of first n terms of ap is an(n-1).Sum of squares of these terms is?

Answers

Answered by parisakura98pari
1
sum of n terms of an AP = n/2 { 2A + (n-1)D}   = An + n² D/2 - nD/2

 =  Dn²/2  + n( A - D/2)    comparing this with one given in ques i.e. an² - an

⇒ D/2 = a  ⇒  D = 2a      and  A - D/2 =  - a ⇒  A = 0

so first term of this AP is 0

and nth term = 0 +(n-1)D =  (n-1)2a = 2an - 2a

Tn =  2an - 2a           (Tn) ² =  4a²n² + 4a² - 8a²n

           sum of (Tn)² =  ∑(Tn)² = ∑ 4a² n²  + 4a² -8a²n

                                 = 4a²∑n² + 4a²∑1 -8a²∑n
 
                                = 4a² n(n+1)(2n+1)/6  + 4a²n - 8a²n(n+1)/2

                     = 2a²n(n+1)(2n+1)/3  + 4a²n - 4a²n(n+1)

as sum of squares of n (natural nos.) = n(n+1)(2n+1)/6
and that of sum of n (natural nos.) = n(n+1)/2 
also sum 1 n times = n

hope my ans is correct .............if any query, then ask.

Similar questions