Sum of first nterms of three Ap are S1 ,S2 ,S3.the frist term is 1and the common differences are 1,2,3 .prove that S1+S2=2S2
Answers
Sum of three A.P's = S1, S2, S3
given a for all the sum is 1
And d ie. common difference of S1= 1
S2= 2
S3= 3
T.P : S1 + S3= 2S2
IE.
n/2 {2a+(n-1)d} + n/2 {2a+(n-1)d} = 2*n/2 {2a+(n-1)d}
=> n/2 {2*1 +(n-1) * 1} + n/2 {2 * 1 +(n-1) * 3] = 2* n/2{2 * 1 +(n-1) * 2}
LHS
n/2 { 2 + n - 1} + n/2 { 2+ 3n -3}
n/2 { 1+n}+ n/2 { 3n - 1}
n/2 {1+n+3n-1} [taking n/2 common]
n/2{4n}
n * 2n
=>2n^2
RHS
2 * n/2 (2 + 2n - 2)
n (2n)
=> 2n^2
Therefore LHS = RHS
ie. S1+S3 = 2S2
hope you understand
plz mark me the brainliest :>
Substituting in the formula,
S1=n/2(2a+(n-1)d)...........(i)
S2=2n/2(2a+(2n-1)d)................ (ii)
S3=3n/2(2a+(3n-1)d),................ (iii)
So,
S2-S1
=2n/2(2a+(2n-1)d)-[n/2(2a+(n-1)d]
_by proper subtraction we get
=n/2[2a + (3n-1)d]
So, 3(S1-S2)
=3n/2(2a + (3n-1)d)
=S3