Math, asked by deepaligulati1977, 3 months ago

sum of GP upto infinity ​

Attachments:

Answers

Answered by MagicalBeast
5

Given :

Sequence,

 \bigg( \:1  \: +  \:  \dfrac{1}{ 3}  \bigg)  \: +  \: \bigg( \: \dfrac{1}{2}   \: +  \:  \dfrac{1}{  {3}^{2} }  \bigg) \:  +  \:  \: \bigg( \: \dfrac{1}{ {2}^{2} }   \: +  \:  \dfrac{1}{  {3}^{3} }  \bigg). \: . \: . \: . \:  \infty

To find :

Sum upto infinity

Formula used :

Sum of infinite term of G.P. is given by ,

 \sf \: S_{\infty}\:=\: \dfrac{a}{1-r}

Here,

  • a = 1st term
  • r = common ratio

Solution :

The given sequence is combination of two G.P.

So we can rewrite it as -

 \bigg( \: \dfrac{1}{3}   \: +  \:  \dfrac{1}{  {3}^{2} }  \:   + \:\dfrac{1}{  {3}^{3} } . \: . \: . \:  \infty \bigg)   \:  +  \: \bigg( \: 1  \: +  \:  \dfrac{1}{  2 }  \:   + \:\dfrac{1}{  {2}^{2} } . \: . \: . \:  \infty \bigg)

So we can find sum of both G.P. individually and then add them

  • For first G.P.

a₁ = 1/3

r₁ = 1/3

For 2nd G.P.

a₂ = 1

r₂ = 1/2

Therefore

 \sf \implies \: S_{\infty}\:=\:S_{\infty  \:  1}\:  + \:  S_{\infty \: 2}\:  \\  \\ \sf \implies \: S_{\infty}\:=\: \dfrac{a_1}{1 - r_1  } \: +   \:  \dfrac{a_2}{1 - r_2}  \\  \\ \\  \sf \implies \: S_{\infty}\:=\: \dfrac{ \dfrac{1}{3} }{1 -  \dfrac{1}{3}  } \: +   \:  \dfrac{1}{1 -  \dfrac{1}{2} }  \\  \\  \\  \sf \implies \:  S_{\infty}\:=\: \dfrac{ \dfrac{1}{3} }{  \dfrac{(1 \times 3) - (1 \times 1)}{3}  } \: +   \:  \dfrac{1}{\dfrac{(1 \times 2) - (1 \times 1)}{2} }  \\  \\  \\  \sf \implies \:  S_{\infty}\:=\: \dfrac{ \dfrac{1}{3} }{  \dfrac{(3 - 1)}{3}  } \: +   \:  \dfrac{1}{\dfrac{(2 - 1)}{2} }  \\  \\  \\ \sf \implies \:  S_{\infty}\:=\: \dfrac{ \:  \:  \dfrac{1}{3} \: \:   }{  \dfrac{2}{3}  } \: +   \:  \dfrac{ \:  \: 1 \:  \: }{\dfrac{1}{2} }  \\  \\  \\  \sf \implies \:  S_{\infty}\:=\:  \:  \:   \bigg( \: \dfrac{1}{3} \: \:    \div   \dfrac{2}{3}   \bigg) \: +   \:   \bigg( \: 1 \:   \div  \: \dfrac{1}{2}  \bigg) \\  \\  \\ \sf \implies \:  S_{\infty}\:=\:  \:  \:   \bigg( \: \dfrac{1}{3} \: \:     \times   \dfrac{3}{2}   \bigg) \: +   \:   \bigg( \: 1 \:   \times   \: \dfrac{2}{1}  \bigg) \\  \\ \sf \implies \:  S_{\infty}\:=\:  \:  \:   \bigg( \: \dfrac{ 3}{6} \: \:      \bigg) \: +   \:   \bigg( \: 2  \bigg) \\  \\ \sf \implies \:  S_{\infty}\:=\:  \:  \:   \dfrac{ 1}{2} \: +   \:   2

\sf \implies \:  S_{\infty}\:=\:  \:  \:   \dfrac{ (1 \times 1) + (2 \times 1)}{2}

\sf \implies \:  S_{\infty}\:=\:  \:  \:   \dfrac{ 1 + 4}{2}

\sf \implies \:  S_{\infty}\:=\:  \:  \:    \bold{\dfrac{ 5}{2} }

ANSWER : 5/2

Similar questions