Math, asked by idpsingh, 10 months ago

Sum of how many terms of the AP 1, 4, 7, 10,...... will be 715?

Answers

Answered by ihrishi
4

Step-by-step explanation:

Given series is:

1 + 4+ 7 + 10 +... = 715

Here, a = 1, d = 3, Sn = 715,

We need to find: n

 \because \: S_n =  \frac{n}{2}  \{2a + (n - 1)d \} \\ \\   \therefore \: 715 =  \frac{n}{2}  \{2 \times 1 + (n - 1) \times 3 \} \\ \\   \therefore \: 715 \times 2 = n \{2  +3n - 3 \} \\ \\  \therefore \: 1430 = n \{3n - 1 \} \\ \\  \therefore \: 3 {n}^{2}  - n - 1430 = 0\\ \\  \therefore \: 3 {n}^{2}  - 66n  + 65n- 1430 = 0\\ \\  \therefore \: 3n(n - 22) + 65(n - 22) = 0 \\  \\ \therefore \: (n - 22)(3n + 65) = 0 \\  \\ \therefore \: (n - 22) = 0 \:  \: or \:  \: (3n + 65) = 0 \\  \\ \therefore \: n = 22 \:  \: or \:  \: n =  -  \frac{65}{3}  \\  \\  \:  \:  \:  \:  \: but \: n \neq \:  -  \frac{65}{3} \\  \\   \huge \red {\boxed{ \boxed{\therefore \: n = 22}}}

Hence, sum of 22 terms will be 715.

Similar questions