Math, asked by sombirlathwal1985, 10 months ago

sum of infinite GP
1 + 2x + 3x { }^{2}  + 4x {}^{3}  + ....... \infty

Answers

Answered by jayantsingh94
1

hope this will help u!!

please mark as brainliest!!

follow me! !

Attachments:
Answered by sivaprasath
1

Answer:

\frac{1}{(1-x)^2}

Step-by-step explanation:

Given :

To find the sum of :

1+2x+3x^2+4x^3+...\infty

Solution :

We know that,

If G.P series given by,

S = a + ar+ar^2+ar^3+...\infty

The sum upto infinity terms is given by,

a + ar+ar^2+ar^3+...\infty = \frac{a}{1-r} ....Identity

here,

the given series can be written as,

1+2x+3x^2+4x^3+...\infty

1+(x+x)+(x^2 + x^2+x^2)+(x^3+x^3+x^3+x^3)+...\infty

(1+x+x^2+x^3+...\infty) + (x+x^2+x^3+...\infty)+(x^2+x^3+x^4+...\infty)+(x^3+x^4+x^5+...\infty)+...

[(1+x+x^2+x^3+...\infty) + x(1+x+x^2+x^3+...\infty)+x^2(1+x+x^2+x^3+...\infty)+....]

(1+x+x^2+x^3+...\infty)(1+x+x^2+x^3+...\infty)

and we can define the single series's summation by using the identity,

So,

(1+x+x^2+x^3+...\infty) = \frac{1}{1-x}

and hence,

(1+x+x^2+x^3+...\infty)(1+x+x^2+x^3+...\infty)= (\frac{1}{1-x})(\frac{1}{1-x})

\frac{1}{(1-x)^2}

Similar questions