Hindi, asked by yuvrajbadwaik, 3 months ago

sum of integer is 69 . one of the integer is - 42 find the other

Answers

Answered by SachinGupta01
10

 \bf \:  \underline{Given} :

 \sf \: Sum  \: of  \: two \: integers \:  is \:  69

 \sf \: One \:  of  \: the  \: integer \:  is  \:  -  42

 \bf  \:  \underline{To \:  find }:

 \sf \: We  \: have  \: to \:  find  \: the  \: another \: number.

 \bf \star \: \underline{So, \:Let's \:Start} \:\star

 \sf Let\: the \:another\: number \:be \:x.

 \red{\longrightarrow \sf\: -42 \: +\: x\: =\: 69}

 \longrightarrow\sf\: x \:= \:69\: - (-42)

 \longrightarrow\sf\: x \:= \:69\: + \:42

 \longrightarrow\sf\:x \:= \:111

 \sf \pink{So,\: the\: another \:number \:is\: 111}

________________________________

 \sf Let's \: verify \:our \:answer.

 \boxed {\green{\sf -42 \: + \: 111 \: = \: 69}}

\sf Hence\: the \:answer \:is \: 111

________________________________

 \sf \underline{Rules \: used \: to\: solve\: this \: question}  :

\boxed{\begin{array} {c|c} \sf{ +,- } & \sf{ - } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad}{} \\ \sf{-  ,  +} & \sf{ - } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad}{} \\ \sf{+,+} & \sf{ + } \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad  }{} \\ \sf{-,-} & \sf{ + }\end{array}}

Answered by BrainlyStar909
7

 \bf \: The \:  another \:  number \:  is  \: 111.

 \large \: \bf Explanation :

 \bf \: Let \:  the \:  another \:  number  \: be \:  Z.

 \bf \: -42 \:  + \:  Z  \: = \:  68

 \bf \: Z  \: =  \: 69 - (-42)

 \bf \: Z = \:  69 + 42

 \bf \: Z \:  =  \: 111

 \underline{{ \underline{ \boxed{  \red{\rm \: So,  \: the \:  another \:  number  \: is \:  111. }}}}}

Similar questions