Math, asked by sanasaikat9, 9 months ago

Sum of maximum and minimum value of 2cos^2x+8sinx.cosx+2cos2x

Answers

Answered by rajeevr06
1

Answer:

 1 +  \cos(2x)  + 4 \sin(2x)  + 2 \cos(2x)  =

4 \sin(2x)  + 3 \cos(2x)  + 1......(i)

now,

 -  \sqrt{ {4}^{2} +  {3}^{2}  }  \leqslant 4 \sin(2x)  + 3 \cos(2x)  \leqslant  \sqrt{ {4}^{2} +  {3}^{2}  }

 - 5 \leqslant 4 \sin(2x)  + 3 \cos(2x)  \leqslant 5

adding 1 both sides

 - 5  + 1\leqslant 4 \sin(2x)  + 3 \cos(2x) + 1  \leqslant 5 + 1

 - 4\leqslant 4 \sin(2x)  + 3 \cos(2x)  + 1 \leqslant 6

max. value = 6, min. value = -4

required sum = 6 - 4 = 2 Ans.

Similar questions