Math, asked by nikhilkohad7954, 8 months ago

Sum of money becomes 16 times in 4 years at si . the rate of intetest is

Answers

Answered by mysticd
1

 Let \: the \: sum \: ( Principal ) = P ,

 Times (T) = 4 \: years ,

 Amount (A) = 16P,

 Simple \: Interest (I) = A - P

 = 16P - P

 = 15P

 Let \: Rate \: of \: Interest = R

 \boxed { \pink {R = \frac{100 \times I }{ P T }}}

 R = \frac{ 100 \times 15P }{ P \times 4 }

 \implies R = 25 \times 15

 \implies R = 375\%

Therefore.,

 \red{ Rate \: of \: Interest }\green {=  375\%}

•••♪

Answered by Anonymous
3

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \:time(t) =4years.

\sf\dashrightarrow amount(A)= 16 \times p=16p

\sf\therefore\text{ let the Rate be x }

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow The\:rate\:of\: interest

✯.FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: Rate= \dfrac{100\times I }{ p\times T}\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore\text{ finding the value of simple intrest.}

WE KNOW

\large\underline\bold{simple\:interest(I)= A-P}

\sf\implies 16p-p

\sf\implies 15p

\large{\boxed{\bf{ \star\:\: simple\:interest(I)= 15p\: \star}}}

NOW,

PUTTING THE VALUES IN THE GIVEN FORMULA.WE GET,

\sf\therefore Rate= \dfrac{100\times I }{ p\times T}

\sf\implies x= \dfrac{ 100\times 15p}{p \times 4}

\sf\implies x= \dfrac{ \cancel{100} \times 15\: \cancel{p}}{\cancel{p} \times \cancel{4}}

\sf\implies x= 25 \times 15

 \sf\implies x = 375\%

\large{\boxed{\bf{ \star\:\: rate(x)= 375\%\:\: \star}}}

\large\underline\bold{THE\:RATE\:OF\:INTEREST\:IS\:375\%.}

________________

Similar questions