Math, asked by sreelakshmimoothedat, 3 months ago

sum of (n+1) terms of arithmetic sequence is Pn²+Qn+R prove that P+R=Q ?​

Answers

Answered by nilesh131211
1

I think the ans is right..i proved it

Attachments:
Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of first n terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of first n terms of an AP

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

↝ Sum of (n + 1 ) terms is,

\rm :\longmapsto\:S_{n + 1}\:=\dfrac{n + 1}{2} \bigg(2 \:a\:+\:(n + 1\:-\:1)\:d \bigg)

\rm :\longmapsto\:S_{n + 1}\:=\dfrac{n + 1}{2} \bigg(2 \:a\:+\:n\:d \bigg)

\rm :\longmapsto\:S_{n + 1}\:=\dfrac{1}{2} \bigg(2an +  {dn}^{2} + 2a + nd  \bigg)

\rm :\longmapsto\:S_{n + 1}\:=\dfrac{1}{2} \bigg({dn}^{2} + nd + 2an + 2a  \bigg)

\rm :\longmapsto\:S_{n + 1}\:=\dfrac{1}{2} \bigg({dn}^{2} + n(d + 2a) + 2a  \bigg)

\rm :\longmapsto\:S_{n + 1}\:= \bigg(\dfrac{1}{2}{dn}^{2} + \dfrac{1}{2}n(d + 2a) + a  \bigg)

But it is given that,

\rm :\longmapsto\:S_{n + 1}\: = P {n}^{2} + Qn + R

So, on comparing we get,

\rm :\longmapsto\:\red{ \bf \: P = \dfrac{d}{2}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \rm :\longmapsto\:\red{ \bf \: Q = \dfrac{1}{2}(2a + d)} \\ \rm :\longmapsto\:\red{ \bf \: R = a} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now,

Consider,

\rm :\longmapsto\:P + R

\sf \:  =  \: \dfrac{d}{2}  + a

\sf \:  =  \: \dfrac{d + 2a}{2}

\sf \:  =  \: \dfrac{1}{2}(d + 2a)

\sf \:  =  \: Q

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions