Math, asked by aryanv8873, 10 months ago

Sum of n term of ap whose n term is ( 5n+1)

Answers

Answered by Anonymous
1

\red{\underline{\underline{Answer:}}}

\sf{The \  sum \  of \ n \ terms \ is \ \frac{n}{2}[5n+7]}

\orange{\underline{\underline{Given:}}}

\sf{\implies{tn=(5n+1)}}

\pink{\underline{\underline{To \ find:}}}

\sf{Sum \ of \ n \ n \ terms}

\green{\underline{\underline{Solution:}}}

\sf{\implies{tn=(5n+1)}}

\sf{\implies{t1=5(1)+1}}

\sf{\implies{t1=6}}

\sf{Sn=\frac{n}{2}[t1+tn]...formula}

\sf{Sn=\frac{n}{2}[6+5n+1]}

\sf{\therefore{Sn=\frac{n}{2}[5n+7]}}

\sf\purple{\tt{\therefore{The \  sum \  of \ n \ terms \ is \ \frac{n}{2}[5n+7]}}}

Answered by TheSentinel
37

\huge\mathfrak\red{\underline{\underline{Question:}}}

\rm{Find \ the \ sum \ of \ n \ terms \ of \  AP \ whose \ n }

\rm{term \ is \ (5n+1) }

__________________________________________

\huge\mathfrak\blue{\underline{\underline{Answer:}}}

\rm\green{Sum \ of \ n \ terms \ of \ an \ AP : \frac{n}{2} [5n + 7]}

__________________________________________

\sf\large\underline\pink{Given:}

\rm{n \ term \ of \ AP \ (5n+1)}

\sf\large\underline\pink{To \ find:}

\rm{Sum \ of \ n \ terms}

\huge\mathfrak\green{\underline{\underline{Solution:}}}

t(n) = (5n + 1)

\rm{Put \ n=1}

t(1) = (5(1) + 1) = 6

t(1) = 6

\rm{we know, }

\rm{Sum \ of \ n \ terms \ of \ an \ AP }

s(n) =  \frac{n}{2} [t(1) + t(n)]

s(n) =  \frac{n}{2} [6 + (5n + 1)]

s(n) =  \frac{n}{2} [5n + 7]

\rm\orange{Sum \ of \ n \ terms \ of \ an \ AP : \frac{n}{2} [5n + 7] }

\rm{Hope \ it \ helps} :))

Similar questions