sum of n terms is m and m terms in n.find sum of m+n.ans.fast
Answers
Answered by
1
Step-by-step explanation:
the final answer is Sm+n = -(m+n)
Attachments:
Answered by
0
Let a be the first term and d be the common difference of the given AP. Then,
Sn=2n[2a+(n−1)d]
Given,
Sm=n
2m[2a+(m−1)d]=n
2am+m(m−1)d=2n ...........(1)
Sn=m
2n[2a+(n−1)d]=m
2an+n(n−1)d=2m ..........(2)
On subtracting 2 from 1, we get,
2a(m−n)+[(m2−n2)−(m−n)]d=2(n−m)
(m−n)[2a+(m+n−1)d]=2(n−m)
2a+(m+n−1)d=−2 ..........(3)
Sum of (m+n) terms of the given AP
Sm+n=2m+n[2a+(m+n−1)d]
=2m+n(−2)
Hope this answer help you
Similar questions