Math, asked by aravindsatishkumar21, 10 months ago

sum of n terms of 2 APs is (5n+3):(3n+4)then ratio of thier 17th tem is

Answers

Answered by Skyllen
4

 \bf  \to\underline{For \: the \: first \: ap} \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \:First \: term = a \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \:Common \: difference \:  = d  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \: Sum \: of \: terms =  s_{n} = \frac{n}{2} 2a + (n - 1)d \\ \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \:  {n}^{th}   term =  a_{n} = a + (n - 1)d\\  \\  \to\bf \underline{For \: the \: second \: term} \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \:First \: term =  A \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \:Common \: difference = D  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \: s_{n} =  \frac{n}{2} 2A + (n - 1)D \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \: \bullet \: A_{n} = A + (n - 1)D \\

 \\ \\ \blue{ \implies} \bf We \: need \: to \: find \: ratio \: of \: 17th \: term.

 \implies \sf \: \: \: \: \: \: \: \: \dfrac{17th \: term \: of \: 1st \: ap}{17th \: term \: of \: 2nd \: ap}  \\  \\  \: \: \: \: \: \: \: \: =   \sf \dfrac{a_{17} \: of \: 1st \: ap}{a_{17} \: of \: 2nd \: ap}  \\  \\  \: \: \: \: \: \: \: \: \sf =  \dfrac{a + (17 - 1)d}{A + (1 7 - 1)D}  \\  \\ \: \: \: \: \: \: \: \: \sf  =  \frac{a + 16d}{A + 16D}

 \\  \bf \because \underline{Given \: that}

  \implies\sf \dfrac{Sum \: of \: nth \: terms \: of \: 1st \: ap}{Sum \: of \: nth \: term \: of \: 2nd \: term}  =  \dfrac{5n + 3}{3n + 4}  \\  \\   \sf \: \: \: \: \: \: \: \: \implies  \dfrac{ \dfrac{n}{2} 2a + (n - 1)d}{ \dfrac{n}{2} 2A + (n - 1)D}  \\  \\ \: \: \: \: \: \: \: \: \implies \sf \: \dfrac{ a + (n - 1)d}{ A + (n - 1)D} ......eq(1)

 \\   \therefore \bf \underline{We \: have \: to \: find}   \:  \to  \frac{a + 16d}{A + 16D}

  \implies \dfrac{n - 1}{2}  = 16 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  n - 1 = 32 \\  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \boxed{n = 33} \\

Putting n = 33 in eq(1),

 \: \: \: \: \: \:  \sf \dfrac{ a +  \dfrac{(33 - 1)d}{2} }{A + \dfrac{(33 - 1)}{2}  D}  =  \dfrac{5(33) + 3}{3(33) + 4}  \\  \\ \: \: \: \: \: \sf \dfrac{a +  \dfrac{32}{2} d}{A +  \dfrac{32}{2}D }  =  \dfrac{168}{103}  \\  \\ \large \implies \boxed {\boxed {\tt \blue {\sf \dfrac{a +  16 d}{A + 16D }  =  \dfrac{168}{103} }}} \\ \\ \\ \sf \bf \implies \therefore \:  \dfrac{17th \: term \: of \: 1st \: term}{17th \: term \: of \: 2nd \: term}  =  \dfrac{168}{103}

Hence, ratio of their 17th term is 168:103.

Similar questions