sum of n termscof 3,33,333...
Answers
Answered by
0
Answer:
Sₙ = (10/27)*(10ⁿ - 1) - n/3
Step-by-step explanation:
The given series is 3, 33, 333, 3333, ..........
The nth term of the series is
tₙ = 33333333.......3( n digits)
= 3 + 3*10 + 3*10² + .....+ 3*10ⁿ⁻¹
= 3[1 + 10 + 10² + .....+ 10ⁿ⁻¹ ]
= 3[ 10ⁿ - 1]/(10-1)
= 3[ 10ⁿ - 1]/9
= (1/3)*[ 10ⁿ - 1]
The sum upto nth term of this series is
Sₙ = Σtₙ = (1/3)Σ(10ⁿ - 1)
or Sₙ = (1/3)*(Σ10ⁿ - n)
or Sₙ = (1/3)*Σ10ⁿ - n/3
or Sₙ = (1/3)*( 10 + 10² + ......+ 10ⁿ) - n/3
or Sₙ = (10/3)*( 1 + 10 + 10²+......+ 10ⁿ⁻¹) - n/3
or Sₙ = (10/3)*(10ⁿ - 1)/(10-1) - n/3
or Sₙ = (10/3)*(10ⁿ - 1)/9 - n/3
or Sₙ = (10/27)*(10ⁿ - 1) - n/3
Similar questions