Math, asked by sheikhsultan494, 11 hours ago

sum of natural numbers from 1 to N is 36 find value of n​

Attachments:

Answers

Answered by shreyasengupta1862
1

Pls mark brainliest :D

Have a gr8 day!!!

Attachments:
Answered by Anonymous
25

Answer:

Question :

The sum of natural numbers from 1 to n is 36. Find value of n.

\begin{gathered}\end{gathered}

Given :

  • ➞ Sum of n terms = 36
  • ➞ Common differences = 1
  • ➞ First term = 1

\begin{gathered}\end{gathered}

To Find

  • ➞ Value of n

\begin{gathered}\end{gathered}

Using Formula :

{\longrightarrow{\small{\underline{\boxed{\sf{\red{{S_n} = \dfrac{n}{2}  \bigg[2a + \bigg(n - 1 \bigg)d\bigg]}}}}}}}

  • \sf{S_n} = Sum of n terms
  • \sf{a} = First term
  • \sf{d} = common difference

\begin{gathered}\end{gathered}

Solution :

Finding the value of n by substituting the values in the formula :

{:\implies{\small{\sf{{S_n} = \dfrac{n}{2}  \bigg[2a + \bigg(n - 1 \bigg)d\bigg]}}}}

Substituting the given values

{:\implies{\small{\sf{36 = \dfrac{n}{2}  \bigg[2 \times 1 + \bigg(n - 1 \bigg)1\bigg]}}}}

{:\implies{\small{\sf{36 = \dfrac{n}{2}  \bigg[2 + \bigg(n - 1 \bigg)1\bigg]}}}}

Multiplying (n - 1) by 1

{:\implies{\small{\sf{36 = \dfrac{n}{2}  \bigg[2 + \bigg(n \times 1 - 1 \times 1\bigg)\bigg]}}}}

{:\implies{\small{\sf{36 = \dfrac{n}{2}  \bigg[2 + \bigg(n - 1\bigg)\bigg]}}}}

Now, taking RHS (2) to LHS and opening round brackets

{:\implies{\small{\sf{36 \times 2 = n  \bigg[2 + n  -  1\bigg]}}}}

{:\implies{\small{\sf{72 = n  \bigg[2 + n  -  1\bigg]}}}}

Now, subtracting 1 from 2

{:\implies{\small{\sf{72 = n  \bigg[1 + n  \bigg]}}}}

Now, multiplying n into 1 + n

{:\implies{\small{\sf{72 =  \bigg[1 \times n + n  \times n \bigg]}}}}

{:\implies{\small{\sf{72 =  \bigg[ n + {n}^{2}  \bigg]}}}}

Opening square brackets

{:\implies{\small{\sf{72 = n + {n}^{2}}}}}

Now, making a equation

{:\implies{\small{\sf{{n}^{2} + n - 72 = 0}}}}

{:\implies{\small{\sf{{n}^{2} + 9n - 8n - 72 = 0}}}}

{:\implies{\small{\sf{ n(n  +  9)  -  8(n  +  9) = 0}}}}

{:\implies{\small{\sf{(n - 8)(n + 9) = 0}}}}

Solving for (n - 8) = 0

{:\implies{\small{\sf{n - 8 = 0}}}}

{:\implies{\small{\sf{n  =  0 + 8}}}}

{\therefore{\sf{\red{ \: n  =  8}}}}

Solving for (n + 9) = 0

{:\implies{\small{\sf{n  + 9 = 0}}}}

{:\implies{\small{\sf{n = 0 - 9}}}}

{\therefore{\sf{\red{n = - 9}}}}

Since, the number of terms n can’t be negative.

Hence, The value of n is 8.

 \rule{220pt}{2.5pt}

Learn More :

★ Formula to find the numbers of term of an AP:

\longrightarrow{\small{\underline{\boxed{\sf{\purple{n= \bigg[ \dfrac{(l - a)}{d}  \bigg]}}}}}}

★ Formula to find the tsum of first n terms of an AP:

\longrightarrow{\small{\underline{\boxed{\sf{\purple{S_n= \dfrac{n}{2} \big(a + l \big)}}}}}}

★ Formula to find the sum of squares of first n natural numbers of an AP:

\longrightarrow{\small{\underline{\boxed{\sf{\purple{S =  \dfrac{n(n + 1)(2n + 1)}{6} }}}}}}

★ Formula to find the nth term of an AP is the square of the number of terms:

\longrightarrow{\small{\underline{\boxed{\sf{\purple{S =  {(n)}^{2} }}}}}}

★ Formula to find the sum of of an AP:

\longrightarrow{\small{\underline{\boxed{\sf{\purple{S = n(n+1)}}}}}}

{\rule{220pt}{3pt}}

Similar questions