sum of nth term of AP whose 7th term is 30 and 13th term 54
Answers
Answered by
14
Hey there !!
Given :-
→ a₇ = 30.
→ a₁₃ = 54.
To find :-
→ Sn.
Solution :-
WE have,
→ a₇ = 30.
⇒ a + 6d = 30......(1).
And,
→ a₁₃ = 54.
⇒ a + 12d = 54.
On substracting equation (1) and (2), we get
a + 6d = 30.
a + 12d = 54.
- - -
__________
⇒ -6d = -24.
⇒ d = 4.
Put the value of d in equation (1), we get
⇒ a + 6d = 30.
⇒ a + 6 × 4 = 30.
⇒ a = 30 - 24 .
⇒ a = 6.
Now,
⇒ Sn = n/2{ 2a + ( n - 1 ) d }.
⇒ Sn = n/2 { 2 × 6 + ( n - 1 )4 }.
⇒ Sn = n/2{ 12 + 4n - 4 }.
⇒ Sn = ( 8n + 4n² )/2 .
⇒ Sn = 2( 4n + 2n² )/2 .
⇒ Sn = 2n² + 4n.
Hence, it is solved,
THANKS
#BeBrainly.
Answered by
4
a7=30 a13=54
a+6d=30 a+12d=54
a=30-6d. a=54-12d
30-6d=54-12d
=30-54=-12d+6d
=-24=-6d
=d=-24-6
=d=4
a=30-60x4
30-24
a=6
sn=n/2(2a+(n-1)d)
sn=n/2(2x6+(n-1)x4)
=n/2(12+4n-4)
=(8n+4n'2)/2
=2(4n+2n'2)/2
=sn=2n'2+4n.
Similar questions
Physics,
7 months ago
English,
7 months ago
Math,
7 months ago
Computer Science,
1 year ago
Math,
1 year ago