Math, asked by kartikaaryan572, 10 months ago

sum of numerator and denominator in a fraction =10 , if numerator increased by 2 and denominator increased by 3 fraction becomes 1/2 , find the fraction​

Answers

Answered by Alcaa
0

The fraction is  \frac{3}{7} .

Step-by-step explanation:

We are given that sum of numerator and denominator in a fraction = 10 , if numerator increased by 2 and denominator increased by 3 fraction becomes 1/2.

Let the numerator of the fraction be x

and the denominator of the fraction be y.

So, according to the question;

  • First condition states that the sum of numerator and denominator in a fraction is 10, that means;

                               x+y=10  

                                y=10-x  ------------------- [Equation 1]

  • Second condition states that if numerator increased by 2 and denominator increased by 3 fraction becomes 1/2, that means;

                       

                                     \frac{x+2}{y+3}=\frac{1}{2}

                              2(x+2)=y+3

                                 2x+4=y+3

                                2x+4=10-x+3      {using equation 1}

                                 2x+4=13-x

                                 2x+x=13-4

                                       3x=9

                                      x=\frac{9}{3} =3

Now, putting value of x in equation 1 we get;

                                      y=10-x

                                      y=10-3=7

So, the resulting fraction is  \frac{x}{y} =\frac{3}{7} .

Similar questions