Math, asked by bala4419, 11 months ago

Sum of numerator and denominator of a feaction is 8. If 3 us added to both numerator and denominator the fraction becomes 3/4. Find fraction

Answers

Answered by MяƖиνιѕιвʟє
189

\bf{\red{\underline{\bf{Given:-}}}}

  • Sum of numerator and denominator of a feaction is 8. If 3 is added to both numerator and denominator the fraction becomes 3/4.

\bf{\red{\underline{\bf{ToFind:-}}}}

  • Fraction

\bf{\red{\underline{\bf{Solution:-}}}}

Let the numerator be x and denominator be y

then,

According to 1st condition :-

  • Numerator + Denominator = 8

x + y = 8

x = 8 - y. --(1)

According to 2nd condition :-

  • Num + 3 / Den + 3 = 3/4

 \implies \:  \frac{x + 3}{y + 3}  =  \frac{3}{4}  \\  \\  \\  \implies \: 4(x + 3) = 3(y + 3) \\  \\  \\  \implies \: 4x + 12 = 3y + 9 \\  \\  \\  \implies \: 4x - 3y = 9 - 12 \\  \\  \\  \implies \: 4x - 3y =  - 3

4x - 3y = -3. --(2)

\rule{200}2

Put the value of (1) in (2) , we get,

4x - 3y = -3

4(8 - y) - 3y = -3

32 - 4y - 3y = -3

32 - 7y = -3

-7y = -3 - 32

-7y = -35

y = -35/-7

y = 5

Put y = 5 in (1) , we get,

x = 8 - y

x = 8 - 5

x = 3

Hence,

  • Numerator = x = 3
  • Denominator = y = 5

Therefore,

  • Fraction is x/y = 3/5

\rule{200}3

Answered by Anonymous
77

{ \huge{ \bold{ \underline{ \underline{ \orange{Question:-}}}}}}

Sum of numerator and denominator of a feaction is 8. If 3 us added to both numerator and denominator the fraction becomes 3/4. Find fraction ..

{ \huge{ \bold{ \underline{ \underline{ \blue{Answer:-}}}}}}

Given : -

  • Sum of Numerator and Denominator is = 8..
  • If 3 us added to both Numerator and denominator the fraction becomes 3/4..

To Find : -

  • New Fraction = ?

Calculating : -

\dashrightarrow\sf{Let\:Denominator\:be=x}

\dashrightarrow\sf{Let\:Numerator\:be=y}

Now ,

\leadsto\sf{{ \large{ \bold{ \underline{ \underline{ \purple{According\:to\:the\:Question:-}}}}}}}

\dashrightarrow\sf{x+y=8}

\dashrightarrow\sf{x=8-y} .... (1)

If 3 us added to both numerator and denominator the fraction becomes 3/4 ..

\dashrightarrow\sf{Denominator=x+3}

\dashrightarrow\sf{Numerator=y+3}

\dashrightarrow\sf{\dfrac{y+3}{x+3}=\dfrac{3}{4}}

\dashrightarrow\sf{4(y+3)=3(x+3)}

\dashrightarrow\sf{4y+12=3x+9}

\dashrightarrow\sf{4y-3x=9-12}

\dashrightarrow\sf{4y-3x=-3} ..... (2)

On Substituting Value of Eq.1 in 2 ...

\dashrightarrow\sf{4(8-y)-3y=-3}

\dashrightarrow\sf{32-4y-3y=-3}

\dashrightarrow\sf{32-7y=-3}

\dashrightarrow\sf{32+3=7y}

\dashrightarrow\sf{35=7y}

\dashrightarrow\sf{y=\cancel\dfrac{35}{6}}

\leadsto\sf{{ \large{ \bold{ \bold{ \bold{ \red{y=5}}}}}}}

Now,Substituing Value of y = 5 in (1) ..

\dashrightarrow\sf{x=8-5}

\dashrightarrow\sf{x=3}

Therefore ,

\dashrightarrow\sf{Denominator=y}

\dashrightarrow\sf{5}

\dashrightarrow\sf{Numerator=x}

\dashrightarrow\sf{3}

The Fraction is 3/5 ..

Similar questions