Math, asked by saranyapk4561, 5 months ago

Sum of series
3+ 33+ 333+……to n terms

Answers

Answered by pankajjhahr1980
0

3+33+333+3333+33333+333333+3333333+333333333+3333333333

ABOVE IS YOUR ANSWER.

HOPE IT HELPS.

PLEASE THANKS AND FOLLOW.

Answered by ravi2303kumar
5

Answer:

\frac{10(10^n - 1)}{27 } - \frac{n}{3}

Step-by-step explanation:

3+ 33+ 333+……to n terms

= (\frac{3}{3}) * (3+ 33+ 333+……to n terms)

= (\frac{1}{3}) * (9+ 99+ 999+……to n terms)

= (\frac{1}{3}) * [ ( 10-1) + (100-1) + (1000-1) + ..... n terms ]

= (\frac{1}{3}) * [ ( 10¹-1) + (10²-1) + (10³-1) + ..... (10ⁿ-1) ]

=  (\frac{1}{3}) * [ ( 10¹ +10² + 10³ + ..... +10ⁿ) - (1+1+1+... n terms) ]

=  (\frac{1}{3}) * [ ( 10¹ +10² + 10³ + ..... +10ⁿ) - n ]

=  (\frac{1}{3}) * [ ( \frac{10\times(10^n - 1)}{10-1 }) - n ]

= (\frac{1}{3}) * [ ( \frac{10\times(10^n - 1)}{9 }) - n ]

=  \frac{10(10^n - 1)}{27 } - \frac{n}{3}

Similar questions