Sum of the areas of 2 square is 468 .. If the diff of their perimeter is 24 . Find the sides .. ❤
Answers
Answer:
Step-by-step explanation:
Let the sides of first and second square be X and Y .
Area of first square = (X)²
And,
Area of second square = (Y)²
According to question,
(X)² + (Y)² = 468 m² ------------(1).
Perimeter of first square = 4 × X
and,
Perimeter of second square = 4 × Y
According to question,
4X - 4Y = 24 -----------(2)
From equation (2) we get,
4X - 4Y = 24
4(X-Y) = 24
X - Y = 24/4
X - Y = 6
X = 6+Y ---------(3)
Putting the value of X in equation (1)
(X)² + (Y)² = 468
(6+Y)² + (Y)² = 468
(6)² + (Y)² + 2 × 6 × Y + (Y)² = 468
36 + Y² + 12Y + Y² = 468
2Y² + 12Y - 468 +36 = 0
2Y² + 12Y -432 = 0
2( Y² + 6Y - 216) = 0
Y² + 6Y - 216 = 0
Y² + 18Y - 12Y -216 = 0
Y(Y+18) - 12(Y+18) = 0
(Y+18) (Y-12) = 0
(Y+18) = 0 Or (Y-12) = 0
Y = -18 OR Y = 12
Putting Y = 12 in EQUATION (3)
X = 6+Y = 6+12 = 18
Side of first square = X = 18 m
and,
Side of second square = Y = 12 m.
Sum of the areas of two squares is 468 m²
∵ x² + y² = 468 . ………..(1) .[ ∵ area of square = side²] → The difference of their perimeters is 24 m.
∵ 4x – 4y = 24 [ ∵ Perimeter of square = 4 × side] ⇒ 4( x – y ) = 24
⇒ x – y = 24/4 .
⇒ x – y = 6 .
∴ y = x – 6 ……….(2)
From equation (1) and (2),
∵ x² + ( x – 6 )² = 468
⇒ x² + x² – 12x + 36 = 468
⇒ 2x² – 12x + 36 – 468 = 0
⇒ 2x² – 12x – 432 = 0
⇒ 2( x² – 6x – 216 ) = 0
⇒ x² – 6x – 216 = 0
⇒ x² – 18x + 12x – 216 = 0
⇒ x( x – 18 ) + 12( x – 18 ) = 0
⇒ ( x + 12 ) ( x – 18 ) = 0
⇒ x + 12 = 0 and x – 18 = 0
⇒ x = – 12m [ rejected ] and x = 18m
∴ x = 18 m
Put the value of ‘x’ in equation (2),
∵ y = x – 6
⇒ y = 18 – 6
∴ y = 12 m