Math, asked by pranav5096, 1 year ago

sum of the areas of two squares is 157 m square the sum of their perimeters is 68 M find the sides of the two squares

Answers

Answered by swastika122003
26

Answer: Let us say that the sides of the two squares be 'a' and 'b'

              Sum of their areas = a^2 + b^2 = 157

               Sum of their perimeters = 4a + 4b = 68

                                                          => 4(a+b)=68

                                                           =>a+b = 68/4

                                                            =>a+b=17

                                                            => a=b-17 ....... (1)

                 Now, (17-b)^2 + b^2=157

                         => 17^2 + b^2 - 2*17*b + b^2 = 157

                         => 289 + b^2 - 34b + b^2 = 157

                         => 289 + 2b^2 - 34b = 157

                         => 289-157 + 2b^2 - 34b = 0

                         => 132 + 2b^2 -34b = 0

                         => 2b^2 - 34b + 132 = 0

                         => b^2 - 17b + 66 = 0 ( Divided by 2 )

                         => b^2 - ( 11+6)b + 66 = 0

                         => b^2 - 11b - 6b + 66 = 0

                         => b(b-11) + 6(b-11) = 0

                         => (b-11) (b+6) = 0

                         => b = -6  or b = 11

 Since, b = -6 is not accepted because the side of a square can't be negative , therefore b = 11 is accepted .

Substituting the value of b in equation (1) , we get,

                a = b-17

             => a = 11 - 17

             => a = 6

Therefore answer is a = 6 and b = 11

.

.

.

.

.

Hope this answer helps you !!!!!

Answered by Anonymous
8

Answer:

hope it helps!!!!....

...

Attachments:
Similar questions