Math, asked by rudragarg555, 10 months ago

Sum of the areas of two squares is 468 m²
. If the difference of their perimeter is 24 m,
formulate the quadratic equation to find the sides of the two squares.​

Answers

Answered by kashifmohiuddin06
1

Answer:

Step-by-step explanation:

let the side of of first square be x and of the second one be y

APQ, x^2+y^2=468..............( equation 1)       (area of square =side.side)

Also,4x-4y=24                                                (perimeter of square =4.side)

      4x-4y=24........(divide this equation by 4)

       x - y =6

       x=y+6

now substitute x in equation  1      

       (y+6)^2 +y^2=468

       y^2+24y+y^2=468

       2y^2+24y-468=0.............(divide this equation by 2)

       y^2+12y-234=0

       On solving by quadratic formula or splitting middle term , you will get the values as

x=18m

y=12m

hope this helps you!  

Answered by luckypriya077
2

 {x}^{2}  +   {y}^{2}  = 468 -  -  - 1 \\  \\ 4x - 4y = 24 -  -  - 2 \\  \\ 4(x - y) = 24 \\  \\ x - y = 6 \\  \\ x = 6 + y -  -  -  - 3 \\  \\ substitute \: eq - 3 \: in \: eq - 1 \\  \\  {(6 + y)}^{2}  +  {y}^{2}  = 468 \\  \\ 36 +  {y}^{2}  + 12y +  {y}^{2}  = 468 \\  \\ 2 {y}^{2}  + 12y = 432 \\  \\ common \: 2 \\  \\  {y}^{2}  + 6y - 216 = 0 \\  \\ factorise \\  \\  {y}^{2}  + 18y - 12y - 216 \\  \\ y(y + 18) - 12(y + 18) \\  \\ (y - 12)(y + 18) \\  \\  y = 12 \: or \: y =  - 18

Similar questions