Math, asked by Shubh444, 9 months ago

sum of the areas of two squares is 468 metres square if the difference of their perimeter is 24 metre find the side of the two square​

Answers

Answered by rachnashivhare01
15

Answer:

Let the sides of first and second square be X and Y .

Area of first square = (X)²

And,

Area of second square = (Y)²

According to question,

(X)² + (Y)² = 468 m² ------------(1).

Perimeter of first square = 4 × X

and,

Perimeter of second square = 4 × Y

According to question,

4X - 4Y = 24 -----------(2)

From equation (2) we get,

4X - 4Y = 24

4(X-Y) = 24

X - Y = 24/4

X - Y = 6

X = 6+Y ---------(3)

Putting the value of X in equation (1)

(X)² + (Y)² = 468

(6+Y)² + (Y)² = 468

(6)² + (Y)² + 2 × 6 × Y + (Y)² = 468

36 + Y² + 12Y + Y² = 468

2Y² + 12Y - 468 +36 = 0

2Y² + 12Y -432 = 0

2( Y² + 6Y - 216) = 0

Y² + 6Y - 216 = 0

Y² + 18Y - 12Y -216 = 0

Y(Y+18) - 12(Y+18) = 0

(Y+18) (Y-12) = 0

(Y+18) = 0 Or (Y-12) = 0

Y = -18 OR Y = 12

Putting Y = 12 in EQUATION (3)

X = 6+Y = 6+12 = 18

Side of first square = X = 18 m

and,

Side of second square = Y = 12 m.

IF YOU FOUND IT HELPFUL THEN PLEASE MARK IT AS BRAINLIEST...PLEASE FOLLOW ME IF YOU FOUND IT HELPFUL...

Answered by Mysterioushine
120

\huge\rm\underline\pink{GIVEN:-}

  • Sum of areas of two squares = 468m²
  • Difference in their perimeter = 24 m

\huge\rm\underline\pink{To\:FIND:-}

  • Side of two squares

\huge\rm\underline\pink{SOLUTION:-}

Let the side of one square be S₁

and Other side be S₂

\large\rm\bold{\boxed{Area\:of\:square\:=\:(Side)^2}}

\large\rm{\implies{(S_1)^2+(S_2)^2\:=\:468}}

\large\rm{\implies{(S_1)\:=\:\sqrt{(468)-(S_2)^2}\rightarrow\:eq(1)}}

\large\rm\bold{\boxed{Perimeter\:of\:square\:=\:4(side)}}

\large\rm{\implies{4(S_1)+4(S_2)\:=\:24}}

\large\rm{\implies{S_1+S_2\:=\:6}}

\large\rm{\implies{S_1\:=\:6-S_2\rightarrow\:eq(2)}}

Since LHS is equal RHS can be equated ,

\large\rm{\implies{6-S_2\:=\:\sqrt{(468)-(S_2)^2}}}

Squaring on both sides ,

\large\rm{\implies{(6-S_2)^2\:=\:468-(S_2)^2}}

\large\rm\bold{\boxed{(a-b)^2\:=\:a^2+b^2-2ab}}

\large\rm{\implies{36+(S_2)^2-12S_2\:=\:468-(S_2)^2}}

\large\rm{\implies{36-12S_2\:=\:468+2(S_2)^2}}

\large\rm{\implies{-2(S_2)^2-12S_2-432\:=\:0}}

\large\rm{\implies{2(S_2)^2-12S-432}}

\large\rm{\implies{2(S_2)^2-36S+24S-432\:=\:0}}

\large\rm{\implies{2S_2(S_2-18)+24(S_2-18)}}

\large\rm{\implies{(S_2-18)(2S_2+24)\:=\:0}}

\large\rm{\implies{S_2\:=\:18\:(or)\:S_2\:=\frac{-24}{2}\:=\:-12}}

Side of a square can't be negative so S₂ = 18 m

From eq(1) ,

\large\rm{S_1\:=\:\sqrt{(468)-(18)^2}\:=\:\sqrt{468-324}\:=\:12\:m}

∴ Sides of squares are 18 m , 12 m

Similar questions