sum of the digit of a two- digit
number. is 9 when we interchange
the digit, it is found that the
resulting new number is greater than
the original number by 27 what
the two digit number?
Answers
Answer:
Let the digits at tens place and ones place: x and 9−x respectively.
∴ original number =10x+(9−x) = 9x+9
Now Interchange the digits: Digit at ones place and tens place: x and 9−x respectively.
∴ New number: 10(9−x)+x
=90−10x+x
=90−9x
AS per the question
New number = Original number +27
90−9x=9x+9+27
90−9x=9x+36
18x=54
x= 54÷18
x=3
Digit at tens place : 3 and one's place : 6
∴ Two digit number: 36
Hope it Helps,
Slight Help taken from toppr,
Byeeee
Answer:
Given
The sum of the two digits = 9
On interchanging the digits, the resulting new number is greater than the original number by 27.
Let us assume the digit of units place = x
Then the digit of tens place will be = (9 – x)
Thus the two-digit number is 10(9 – x) + x
Let us reverse the digit
the number becomes 10x + (9 – x)
As per the given condition
10x + (9 – x) = 10(9 – x) + x + 27
⇒ 9x + 9 = 90 – 10x + x + 27
⇒ 9x + 9 = 117 – 9x
On rearranging the terms we get,
⇒ 18x = 108
⇒ x = 6
So the digit in units place = 6
Digit in tens place is
⇒ 9 – x
⇒ 9 – 6
⇒ 3
Hence the number is 36