English, asked by Anonymous, 1 month ago

Sum of the digits of a two-digit number is 9. When we interchange the digits, it is found that the resulting new number is greater than the original number by 27. What is the two-digit number?

No Copy paste !​

Answers

Answered by deepak1463
3

Explanation:

Let the digits of the original number be x and y

Hence, the original number is 10x + y (Assuming x to be the ten's digit and y to be the one's digit)

After interchanging the digits the new number will be 10y + x (After reversing, y becomes the ten's digit and x becomes the one's digit)

Condition 1: Sum of the digits is 9 ⇒ x + y = 9     --------- equation (i)

Condition 2: The number obtained by interchanging the digits is 27 greater than the earlier number.

⇒ New number = 27 + original number

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation

(ii)By adding equation(i) and

equation(ii):

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation (ii)By adding equation(i) and equation(ii):x + y + y - x = 9 + 3

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation (ii)By adding equation(i) and equation(ii):x + y + y - x = 9 + 3⇒ 2y =  12

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation (ii)By adding equation(i) and equation(ii):x + y + y - x = 9 + 3⇒ 2y =  12⇒ y = 6

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation (ii)By adding equation(i) and equation(ii):x + y + y - x = 9 + 3⇒ 2y =  12⇒ y = 6From equation(i): x + 6 = 9 

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation (ii)By adding equation(i) and equation(ii):x + y + y - x = 9 + 3⇒ 2y =  12⇒ y = 6From equation(i): x + 6 = 9 ⇒ x = 9 - 6 = 3

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation (ii)By adding equation(i) and equation(ii):x + y + y - x = 9 + 3⇒ 2y =  12⇒ y = 6From equation(i): x + 6 = 9 ⇒ x = 9 - 6 = 3⇒ x = 3 and y = 6

⇒ New number = 27 + original number⇒ 10y + x = 27 + (10x + y)⇒ 10y + x = 27 + 10x + y⇒ 10y - y + x - 10x = 27⇒ 9y - 9x = 27⇒ y - x = 3    -------- equation (ii)By adding equation(i) and equation(ii):x + y + y - x = 9 + 3⇒ 2y =  12⇒ y = 6From equation(i): x + 6 = 9 ⇒ x = 9 - 6 = 3⇒ x = 3 and y = 6⇒ The required number is 10x + y = 10 × 3 + 6 = 30 + 6 = 36

Hope this will help you

And i also subscribed your channel on You Tube

Answered by Anonymous
1

Answer

Hence the number is 36

Explanation:

The sum of the two digits = 9

On interchanging the digits, the resulting new number is greater than the original number by 27.

Let us assume the digit of units place = x

Then the digit of tens place will be  = (9 – x)

Thus the two-digit number is 10(9 – x) + x

Let us reverse the digit

the number becomes 10x + (9 – x)

As per the given condition

10x + (9 – x) = 10(9 – x) + x + 27

⇒ 9x + 9 = 90 – 10x + x + 27

⇒ 9x + 9 = 117 – 9x

On rearranging the terms we get,

⇒ 18x = 108

⇒ x = 6

So the digit in units place = 6

Digit in tens place is

⇒ 9 – x

⇒ 9 – 6

⇒ 3

Hence the number is 36

tum aaj raat aogi kya...

aogi toh same meet join karo

jqe-iyrj-bxb

Similar questions