Math, asked by ninantho23, 8 months ago

Sum of the first 14 terms of an A.P. is 1505 and its first term is 10 . Find its 25^th term

Answers

Answered by SarcasticL0ve
5

GivEn:-

  • First term of AP (a) = 10

  • Sum of the first 14 terms of an A.P. is 1505

To find:-

  • \sf 25^{th} term of AP (\sf a_{25}

SoluTion:-

As we know that,

✩ Sum of n terms of an AP -

\dag\;{\underline{\boxed{\bf{\pink{S_n = \dfrac{n}{2} \bigg( 2a + (n - 1)d \bigg)}}}}}

\;\;\;\;\star\;\sf \underline{Put\;givEn\;values:-}

:\implies\sf 1505 = \dfrac{14}{2} \bigg( 2 \times 10 + (14 - 1)d \bigg)

:\implies\sf 1505 \times 2 = 14( 20 + 13d)

:\implies\sf 3010 = 14( 20 + 13d)

:\implies\sf \cancel{ \dfrac{3010}{14}} = 20 + 13d

:\implies\sf 215 = 20 + 13d

:\implies\sf 215 - 20 = 13d

:\implies\sf 195 = 13d

:\implies\sf d = \cancel{ \dfrac{195}{13}}

:\implies{\underline{\boxed{\bf{\purple{ d = 15}}}}}

▬▬▬▬▬▬▬▬▬▬

As we know that,

\sf n_{th} terms of an AP -

\dag\;{\underline{\boxed{\bf{\pink{a_n = 2a + (n - 1)d}}}}}

\;\;\;\;\star\;\sf \underline{Put\;givEn\;values:-}

:\implies\sf a_{25} =  10 + (25 - 1) 15

:\implies\sf a_{25} =  10 + 24 \times 15

:\implies\sf a_{25} =  10 + 360

:\implies{\underline{\boxed{\bf{\purple{ a_{25} =  370}}}}}

\therefore\;\sf \underline{25^{th} \; term \; of \; AP \; is \; \bf{370}}

▬▬▬▬▬▬▬▬▬▬

Formula Used:-

\begin{lgathered}\boxed{\begin{minipage}{15 em}$\sf \displaystyle \bullet a_n=a + (n-1)d \\\\\\ \bullet S_n= \dfrac{n}{2} \left(a + a_n\right)$\end{minipage}}\end{lgathered}

▬▬▬▬▬▬▬▬▬▬

Answered by atahrv
23

Answer:

\large\boxed{\star\:\:\: a_{25}=370\:\:\:\star}

Step-by-step explanation:

Given :–

  • S₁₄=1505
  • a₁=a=10

To Find :–

  • a₂₅ (25th term of this A.P.)

Formulas Applied :–

  • a_n=a+(n-1)d
  • S_n=\frac{n}{2} [2a+(n-1)d]

Solution :–

We are given that : S₁₄=1505, a=10, n=14.

S_n=\frac{n}{2} [2a+(n-1)d]

Put the above values in this formula :-

\implies S_{14}=\frac{14}{2}[2(10)+(14-1)d]

\implies 1505=\frac{14}{2}[2(10)+(14-1)d] \:\:\:\:\:\:\:\:\:[\because\:S_{14}=1505]

\implies 1505=7\times(20+13d)

\implies \frac{1505}{7} =20+13d

\implies 215=20+13d

\implies 13d=215-20

\implies 13d=195

\implies d=\frac{195}{13}

\implies \boxed{d=15}

Now ,we have to find a₂₅ :

For finding a₂₅, we have :

  • a=10
  • d=15
  • n=25

aₙ=a+(n-1)d

Put the above values in this formula :-

\implies a_{25}=10+(25-1)\times(15)

\implies a_{25}=10+(24)\times(15)

\implies a_{25}=10+360

\implies \boxed{a_{25}=370}

→ More Information about A.P. :–

A.P. (Arithmetic Progression) is a sequence of series which have a Common Difference(d).

Some more Formulas From A.P. :

The formulas below are used when the Last term of the A.P. is Given.

  • S_n=\frac{n}{2} [a+l] \:,\:\:where \:l\:denotes\:the\:last\:term.
  • a_n=l-(n-1)d\:,\:where\:l\:denotes\:the\:Last\:Term.
Similar questions