Math, asked by kaish5526, 2 months ago

sum of the first 9th term is 261 and next 6 terms is 444 find 1st term

Answers

Answered by ripinpeace
2

5

Step-by-step explanation:

Correct question

  • Consider an arithmetic sequence whose sum of first 9 terms is 261 and sum of next 6 terms is 444.

Given -

  • Sum of first 9 terms is 261.
  • Sum of next 6 terms is 444.

To find -

  • The 1st term.

Solution -

Formula for sum of n terms in an A.P is

 \rm{ \bf \blue{S {\tiny{n}} =  \dfrac{n}{2} \{2a + (n - 1)d \} }}

where, a = first term of the A.P

and, d = common difference

On putting the values in the formula, we get,

 \longmapsto \rm{{261} =  \dfrac{9}{2} \{2a + (n - 1)d \} }

 \longmapsto \rm{{ \dfrac{ {\cancel{261} \: ^{29}  }\times 2}{ \cancel9} } = 2a + (9 - 1)d }

 \longmapsto \rm{{ 29 \times 2 } = 2a + (8)d }

 \longmapsto \rm{ \bf \pink{58 = 4a + 8d} \:  \:  \:  \:  \:  \:  \:  \:\:\: \:\: \:  \:  \:\:  \:   \:  \:  \:  \:  \:  \: (1)}

Now, the next 6 terms after 9th term is,

=> 10th, 11th, 12th, 13th, 14th, 15th.

Sum of next 6 terms is,

 { \longmapsto\rm{ a {\tiny10} +  a {\tiny11} +  a {\tiny12}  +  a {\tiny13}   +  a {\tiny14} +  a {\tiny15} = 441 }}

{ \longmapsto \rm{a + 9d + a + 10d + a + 11d + a + 12d + a + 13d + a + 14d = 441}}

 \longmapsto \rm{6a + 69d = 444}

 \longmapsto \rm{(2a + 23d)3 = 444}

{ \longmapsto \rm{ \underline{  \purple{\bf2a + 23d = 148}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (\bf 2)}}

(2) - (1),

{ \longmapsto \rm{148 - 58= 2a + 23d - (2a + 8d)}}

{ \longmapsto \rm{90= 2a + 23d - 2a  - 8d}}

{ \longmapsto \rm{90= 15d}}

{ \longmapsto \rm{\dfrac{\cancel{90}}{\cancel{15}}= d}}

{ \longmapsto \rm{\bf \red{6= d}}\:\:\:\:\:\:\{putting \: in\: (1)\}}

{ \longmapsto \rm{58= 2a + 8(6)}}

{ \longmapsto \rm{58= 2a + 48}}

{ \longmapsto \rm{58 - 48 = 2a }}

{ \longmapsto \rm{10 = 2a }}

{ \longmapsto \rm{\dfrac{\cancel{10}}{\cancel{2}}= d}}

{ \longmapsto \rm{\bf \green{5 = a} }}

Therefore, the 1st term is 5.

Similar questions