Math, asked by Archita199, 1 year ago

Sum of the first n terms of an arithmetic progression is n^2+4n. Find the 15th term of the progression
please solve it....​

Answers

Answered by BrainlyConqueror0901
13

Answer:

\huge{\pink{\green{\mathsf{a15=33}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

  \:  \: \:  \:  \:  \: { \orange{given}} \\ { \green{Sn =  {n}^{2} + 4n }} \\ { \green{let \: n  = 1,2,3.....}}  \\  \\ { \blue{to \: find}} \\ { \red{a15 =? }}

According to given question:

 \to Sn =  {n}^{2}  + 4n \\  \to S1 =  {1}^{2}  + 4  \times 1 \\  \to S1 = 1 + 4 \\  \to S1 = 5  = a1\\   \\  \to S2 =  {2}^{2}  + 4 \times 2 \\  \to S2 = 4 + 8 \\  \to S2 = 12 \\  \\  \to S3 =  {3}^{2}  + 4 \times 3 \\  \to \: S3 = 9 + 12 \\  \to S3 = 21 \\  \\   \to a2 = S2 - S1 \\   \to a2 = 12 - 5 \\  \to a2 = 7 \\  \\  \to  a3 = S3 - S2 \\  \to a3 = 21 - 12 \\  \to a3 = 9 \\  \\  \to d = a2 - a1 \\  \to d = 7 - 5 \\  \to d = 2

☆ first term=5

☆ common difference=2

\to a15 = a + 14d \\  \to a15 =  5 + 14 \times 2 \\  \to a15 = 5 + 28 \\  { \green{\to a15 = 33}}

_________________________________________

Similar questions