Sum of the first p,q and r
terms of an AP are a, b and c
respectively. Prove that
a/p(q-r)+ b/q (r-p) +c/r (P-q)=0
Answers
Answer:
Step-by-step explanation:
Let the first term is a and common difference is d .
//We know that Sum of n terms of an A.P. = n/2[2a + (n - 1)d]
Sum of first p terms, Sp = a
p/2 [2a + (p - 1) d] = a
=> a/p = 1/2[2a + (p - 1)d] ----- (1)
Sum of first q terms, Sq = b
q/2 [2a + (q - 1) d] = b
=> b/q = 1/2[2a + (q - 1)d] ------ (2)
Sum of first r terms, Sr = c
r/2[2a + (r - 1) d] = c
=> c/r = 1/2[2a+ (r - 1)d] ------ (3)
Now L.H.S
a/p * (q - r) + b/q * (r - p) + c/r * (p - q)
=> 1/2[2a + (p - 1)d] * (q - r) + 1/2[2a + (q - 1)d] * (r - p) + 1/2[2a+ (r - 1)d] * (p - q)
=> 1/2 [ 2a(q - r) + 2a (r - p) + 2a(p - q) + d [(p - 1)( q - r) + d ( q - 1)(r - p) + d ( r - 1)(p - q)]
=> 1/2 [ 2a(q - r + r - p + p - q) + d (pq - pr - q + r + qr - qp - r + p + rp - rq - p +q)]
=> 1/2 [ 2a (0) + d (0)]
=> 0
= R.H.S
Hence proved.