Sum of the first p,q and r terms of an AP are a,b and c respectively. Prove that a/p(q-r)+b/q(r-p)+c/r(p-q)=0
Answers
Hope it helps you
ANSWER :
- Let, A be the first term
- D be the common difference
- In this question we have to use this ( Sn ) formula :
Sn = n/2 { 2a + ( n -1 ) d }
a = sum of p terms.
⇒ a = p/2 { 2A + ( p - 1 ) D }
⇒ 2a/p = { 2A + ( p - 1 ) D } ------------ ( i )
b = sum of q terms.
⇒ b = q/2 { 2A + ( q - 1 } D
⇒ 2b / q = { 2A + ( q - 1 ) D } ------------- ( ii )
And now, c = sum of r terms.
⇒ c = r/2 { 2A + ( r - 1 ) D }
⇒ 2c/r = { 2A + ( r - 1 ) D } ------------- ( iii )
Multiply eq ( i ), ( ii ) and ( iii ) by (q-r) , (r-p) and (p-q) and add we get :
2a/p ( q-r ) + 2b/q ( r-p ) + 2c/r ( p - q )
{ 2A + ( p-1 ) D } ( q - r ) + { 2A + ( q-1 ) D } ( r - p ) + { 2A + ( r - p ) D } ( p - q )
2A {( q - r + r - p + p - q ) + D { ( p - 1 ) ( q - r ) + ( q - 1 ) ( r - p ) + ( r - 1 ) ( p - q )}
= 2A × 0 + D × 0 = 0
HENCE IT IS PROVED...!!!