sum of the interior angles of a regular polygon of n sides is (a)n*90° , (b) (n-2)*90°, (c) n*180°, (d) (n-2) *180
Answers
Answer:
(d) (n-2)×180°
is the answer......
Answer:
We will learn how to find the sum of the interior angles of a polygon having n sides.
We know that if a polygon has ‘n’ sides, then it is divided into (n – 2) triangles.
We also know that, the sum of the angles of a triangle = 180°.
Therefore, the sum of the angles of (n – 2) triangles = 180 × (n – 2)
= 2 right angles × (n – 2)
= 2(n – 2) right angles
= (2n – 4) right angles
Therefore, the sum of interior angles of a polygon having n sides is (2n – 4) right angles.
Thus, each interior angle of the polygon = (2n – 4)/n right angles.
Step-by-step explanation:
Hoping that will be useful for you