Math, asked by mitavishwas4, 10 months ago

sum of the pair of the opposite angel of a parallelogram is 240
find the remaining angel​

Answers

Answered by Anonymous
1

Step-by-step explanation:

Given:-

  • sum of the pair of the opposite angel
  • A parallelogram is 240

To Find :-

  • find the remaining angel

Solution :-

=> x + x = 240

=> 2x = 240

=> x = 240/2

=> x = 120

opposite angles = 180° - 120° = 60°

Hence , the angles of the parallelogram are 120° , 60° , 120° and 60°.

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
2

\huge\sf\pink{Answer}

The Angles are,

☞ 60°

☞ 120°

☞ 60°

☞ 120°

\rule{110}1

\huge\sf\blue{Given}

✭ There is a paralleogram

✭ Sum of two opposite angle of a paralleogram is 240°

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Remaining Angles?

\rule{110}1

\huge\sf\purple{Steps}

\large\sf\star\: Diagram \: \star

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(8.6,3){\sf\large{A}}\put(7.7,0.9){\sf\large{B}}\put(9.5,0.7){\sf{\sg\large{Base}}}\put(11.1,0.9){\sf\large{C}}\put(8,1){\line(1,0){3}}\put(11,1){\line(1,2){1}}\put(9,3){\line(3,0){3}}\put(7.7,2){\large{\sf Height}}\put(8,1){\line(1,2){1}}\put(12.1,3){\sf\large{D}}\end{picture}

Let us the Angles to be x°

\bullet\: \underline{\textsf{As Per the Question}}

\sf{x + x =240^{\circ}}

\sf{2x=240^{\circ}}

\sf{x =\dfrac{240^{\circ}}{2}}

\red{\sf x =120^{\circ}}

Adjacent Angles of a parallelogram add up to 180°

Let the adjacent angle be y° and 120°

So,

\sf{ y+120=180}

\sf{ y =(180-120)}

\orange{\sf y =60}

\rule{170}3

Similar questions