Math, asked by mitunmehta, 22 days ago

Sum of the roots of a quadratic equation is
thrice (3 times) then product. Find k if equation
is x? - 2kx + k-3=0.​

Answers

Answered by bipulpandit2006
0

Answer:

Step-by-step explanation:

-2kx+k-3=0

-kx+k=0+3+2

-kx+k=5

-k+k+x=5

x=5

Answered by varadad25
3

Answer:

The value of k is 9.

Step-by-step-explanation:

The given quadratic equation is x² - 2kx + ( k - 3 ) = 0.

Comparing with ax² + bx + c = 0, we get,

  • a = 1
  • b = - 2k
  • c = ( k - 3 )

We know that,

\displaystyle{\pink{\sf\:Sum\:of\:roots\:=\:-\:\dfrac{b}{a}}}

\displaystyle{\implies\sf\:Sum\:of\:roots\:=\:-\:\dfrac{-\:2k}{1}}

\displaystyle{\implies\sf\:Sum\:of\:roots\:=\:-\:(\:-\:2k\:)}

\displaystyle{\implies\blue{\sf\:Sum\:of\:roots\:=\:2k}}

Now,

\displaystyle{\pink{\sf\:Product\:of\:roots\:=\:\dfrac{c}{a}}}

\displaystyle{\implies\sf\:Product\:of\:roots\:=\:\dfrac{k\:-\:3}{1}}

\displaystyle{\implies\green{\sf\:Product\:of\:roots\:=\:k\:-\:3}}

From the given condition,

\displaystyle{\sf\:Sum\:of\:roots\:=\:3\:\times\:Product\:of\:roots}

\displaystyle{\implies\sf\:2k\:=\:3\:\times\:(\:k\:-\:3\:)}

\displaystyle{\implies\sf\:2k\:=\:3k\:-\:9}

\displaystyle{\implies\sf\:9\:=\:3k\:-\:2k}

\displaystyle{\implies\underline{\boxed{\red{\sf\:k\:=\:9\:}}}}

∴ The value of k is 9.

Similar questions