Math, asked by opchacha788, 8 months ago

Sum of the series is 31+29+27..... +7 by A.P

Answers

Answered by ItzAditt007
0

Answer:-

Your Answer Is 228.

ExplanaTion:-

Given:-

  • An AP.

  • First term of the AP \tt (a_1) = 31.

  • Second term of the AP \tt (a_2) = 29.

  • Last term of the AP \tt(a_n) = 7.

To Find:-

  • The sum of all these terms of the AP.

Formula Used:-

\\ \tt\longrightarrow S_n = \dfrac{n}{2}(a_1 + a_n).\\ \\ \tt\longrightarrow d = a_2-a_1.\\ \\ \tt\longrightarrow a_n = a+(n-1)d.

Where

  • n = Number of Terms.

  • d = Common difference.

  • \tt S_n = Sum of n terms.

So Here,

 \\ \tt\longrightarrow d = a_2 - a_1. \\  \\ \tt\longrightarrow d = 29  - 31 . \\  \\ \longrightarrow { \boxed{ \underline{ \tt d =  - 2.}}} \\

So common difference is -2.

Also,

 \\ \tt\longrightarrow a_n = a + (n - 1)d. \\  \\ \tt\longrightarrow7 = 31 + (n - 1)( - 2). \\  \\ \tt\longrightarrow7 = 31  - 2n + 2. \\  \\ \tt\longrightarrow7 = 33 - 2n \\  \\ \tt\longrightarrow2n = 33 - 7. \\  \\ \tt\longrightarrow2n = 24. \\  \\ \tt\longrightarrow n =   \cancel\frac{24}{2}. \\  \\  \tt\longrightarrow \boxed{ \underline{  \tt n = 12.}} \\

So number of terms are 12.

And,

 \\ \tt\mapsto S_n =  \frac{n}{2} (a + a_n). \\  \\ \tt\mapsto S_{12} =  \cancel \frac{12}{2}(31 + 7).  \\  \\ \tt\mapsto S_{12} = 6(38). \\  \\ \tt\mapsto { \boxed{ \underline{ \tt S_{12} = 228.}}} \\

\bf\therefore The sum of the series is 228.

Similar questions