Math, asked by Achuhari, 5 hours ago

Sum of the squares of two consecutive odd natural numbers is 202. Using this we can form a second degree equation in the form ax² +bx+ c = 0 . which number comes in the place of ' c ' ?​

Options
_________
a) 202
b) 198
c) -198

Answers

Answered by dolimahour70
1

Answer:

C)-198

Step-by-step explanation:

let first no =X

2nd odd no =X+2

x²+(x+2)²=202

x²+x²+2x+4=202

2x²+2x+4-202=0

2(x²+x-198)=0

x²+x-198=0

plz make my answer branitist vote for it and like also

Answered by 9218
2

Question :-

  • Sum of the squares of two consecutive odd natural numbers is 202. Using this we can form a second degree equation in the form ax² +bx+ c = 0 . which number comes in the place of ' c ' ?

To find :-

  • Which number comes in the place of 'c' ?

 \large{ \sf{ \underline{Solution  - }}}

Let us assume the first nunber be 'x'

 \sf{According  \: to \:  question : }

 \bold{2nd }\: \sf {odd \: number}

 \large{ =}  \: \sf{ x }+ \bold{ 2}

 \large{   ↦ \:  } \:  \sf{ {x}^{2} } \:  \small{  \: + \:  } \:  \: \sf{(x} \small \:  \: { + } \:  \bold{2)} {}^{2}  \large {= 202}

 \large{ ↦ \:   \: } \sf{ {x}^{2} }  \small{ \:  \:  + } \:  \:   \large{\sf{ {x}^{2} }} \:  \small{  \:  \: + }  \:  \:  \:  \large{2x} \:  \:   \small{ \:  \:  + } \: \:  \:   \:  \large{4 = 202}

 \large{↦ \: \:  }  \large{\sf{2x {}^{2}} }  \small \: { + \:  \:  }   \sf{\large{2x}}  \small \:  \: { \: +} \:  \:   \large{ \sf{4}}  \small{ \:  \: - \:  \: }  \: \large{202 = 0}

 \large{↦ \: } \:  \sf{2(x {}^{2}  \small{ \:  \:  + } \:  \:  \sf{ \large{x}}}  \:  \small{ \:  \:  - } \:  \:  \sf{ \large{198)}}  \large{ \bold{ = 0}}

 \large{↦ \: } \: \sf {x}^{2}    \:  \: \small{ + } \:  \:   \sf{ \large{x}} \:  \:  =  \:  \large{198}

Answer : 198

Similar questions