Math, asked by ifath2007, 5 months ago

sum of three colnsective integer is 24 find the integer

Answers

Answered by Anonymous
9

Given:-

  • Sum of three consecutive integer is 24.

To find:-

  • The integer.

Solution:-

Let,

  • the three consecutive integers be x, x + 1, x + 2.

According to the question

→ x + (x + 1) + (x + 2) = 24

→ 3x + 3 = 24

→ 3x = 24 - 3

→ 3x = 21

→ x = 21/3

x = 7

Hence, the three consecutive integers are:-

  • x = 7
  • x + 1 = 7 + 1 = 8
  • x + 2 = 7 + 2 = 9

Verification:-

→ 7 + 8 + 9

→ 15 + 9

24

Hence Verified

Answered by CɛƖɛxtríα
90

Answer:

  • The three integers are 7, 8 and 9.

Step-by-step Explanation:

\normalsize\underline{\bf{Given:}}

\:\:\:\:\normalsize{\sf{The\:sum\:of\:three\: integers\:is\:24}}

\:\:\:\:\normalsize{\sf{And\:the\:three\: integers\:are\: consecutive.}}

\normalsize\underline{\bf{To\:find:}}

\:\:\:\:\normalsize{\sf{The\:three\: integers}}

\normalsize\underline{\bf{Solution:}}

\normalsize{\sf{Let,\:the\:three\: consecutive\: integers\:be:}}

  • \large{\tt{\red{(p)}}}
  • \large{\tt{\red{(p+1)}}}
  • \large{\tt{\red{(p+2)}}}

\normalsize{\bf{According\:to\:the\: given\:question:}}

\:\:\:\:\:\large{\tt{p+(p+1)+(p+2)=24}}

\large\implies{\mathrm{3p+3=24}}

\large\implies{\mathrm{3p=24-3}}

\large\implies{\mathrm{3p=21}}

\large\implies{\mathrm{p=\cancel{\frac{21}{3}}}}

\:\:\:\:\:\:\:\:\:\:\:\Large\implies{\boxed{\tt{p=7}}}

\normalsize{\bf{So,}}

  • \large{\sf{p= \red{\underline{7}}}}
  • \large{\sf{(p+1)=7+1= \red{\underline{8}}}}
  • \large{\sf{(p+2)=7+2= \red{\underline{9}}}}

\normalsize\underline{\bf{Verification:}}

\normalsize{\sf{Sum\:of\:three\: consecutive\:integers=24}}

\normalsize\longrightarrow{\mathrm{7+8+9=24}}

\normalsize\longrightarrow{\mathrm{24=24}}

\normalsize\longrightarrow{\sf{L.H.S=R.H.S}}

\normalsize\longrightarrow\underline{\bf{Hence,\: verified!}}

\normalsize\underline{\bf{Final\:answer:}}

\normalsize\therefore\underline{\boxed{\tt{\pink{The\: three\:integers\:are\:7,\:8\:and\:9.}}}}

________________________________

Similar questions