Sum of three numbers in AP is 12 and the sum of their squares is 56 find the numbers
Answers
Answered by
16
Heya !!!!!!!!!
★--------Here is your answer ---★
Let The Number be a - d , a , a + d
So ----------->
a - d + a + a + d = 12
3a = 12
a = 4
So a = 4
Now ----->
( a - d )2 + a2 + (a + d)2 = 56
a2 + d2 - 2ad +a2+ a2 +d2 +2ad = 56
3a2 + 2d2 = 56
3× (4)2 + 2d2 = 56
48 + 2d2 = 56
2d2 = 8
d2 = 4
d = 2
So d = 2
Hence the number are
a - d = 4-2 = 2
a = 4
and a+d = 4+2=6
★
So , 2,4,6
Hope correct
if so Then plz mark Brainliest ★★★
★--------Here is your answer ---★
Let The Number be a - d , a , a + d
So ----------->
a - d + a + a + d = 12
3a = 12
a = 4
So a = 4
Now ----->
( a - d )2 + a2 + (a + d)2 = 56
a2 + d2 - 2ad +a2+ a2 +d2 +2ad = 56
3a2 + 2d2 = 56
3× (4)2 + 2d2 = 56
48 + 2d2 = 56
2d2 = 8
d2 = 4
d = 2
So d = 2
Hence the number are
a - d = 4-2 = 2
a = 4
and a+d = 4+2=6
★
So , 2,4,6
Hope correct
if so Then plz mark Brainliest ★★★
Answered by
12
Solution:
Given: Sum of 3 terms of an AP is 12 and sum of their squares is 56.
To find: The numbers of that property
let a number be : a , then the others be: a+d, a-d
so,
(a-d)+a+(a+d) =12
3a =12
a =4..(i)
(a-d)²+(a)²+(a+d)²=56
(4-d)²+(4)²+(4+d)²=56
(4)²-2(4)(d)+d²
+(4)²
+(4)²+2(4)(d)+(d)²=56
4²+d²+4²+4²+d²=56
16+16+16+2d²=56
48+2d²=56
2d²=56-48
2d²=8
d²=4
d=+2 (or) d=-2
hence, a+d=4-2=2 (or) a+d=4+2=6
and, a-d=4-(-2)=4+2=6 (or) a-d=4-2=2
Hope it Helps
Given: Sum of 3 terms of an AP is 12 and sum of their squares is 56.
To find: The numbers of that property
let a number be : a , then the others be: a+d, a-d
so,
(a-d)+a+(a+d) =12
3a =12
a =4..(i)
(a-d)²+(a)²+(a+d)²=56
(4-d)²+(4)²+(4+d)²=56
(4)²-2(4)(d)+d²
+(4)²
+(4)²+2(4)(d)+(d)²=56
4²+d²+4²+4²+d²=56
16+16+16+2d²=56
48+2d²=56
2d²=56-48
2d²=8
d²=4
d=+2 (or) d=-2
hence, a+d=4-2=2 (or) a+d=4+2=6
and, a-d=4-(-2)=4+2=6 (or) a-d=4-2=2
Hope it Helps
Similar questions