Math, asked by tauahif6830, 11 months ago

Sum of two irrational number is always irrational true or flase

Answers

Answered by Anonymous
5

Answer:

its True

mark as brainliest

Answered by amitkumar44481
2

 \large\mathfrak{Answer:- }

 \tt{True.}

 \\ \\ \tt \red{How  \: ? }</p><p></p><p>  \\  \:  \:  \:  \:  \:  \: \tt{Let's \:  Find\: out.}

  \:  \:  \:  \:  \:  \: \tt{Let \:  \sqrt{P}  \: and \:   \sqrt{ Q } \: two} \\  \:  \:  \:  \:  \:  \:  \tt{ irrational \: no.}

 \tt{Sum  \: of  \: it's }

 \:  \:  \:  \:  \:  \:  \tt{ \sqrt{p}  +  \sqrt{q}  =  \frac{a}{b}  }

 \tt \small{Where \:  as \:  a  \: and  \:  b  \: are \:  Co  \: prime  \: and } \\  \tt{ HCF  \: of  \: (a,b ) = 1.}

 \tt{Squaring \:  both \:  side , we  \: get.}

\\  \:  \:  \:  \:  \:  \:  \tt{{ (\sqrt{p}  +  \sqrt{q}  ) }^{2} = {(  \frac{a}{b}) }^{2}   }

 \:  \:  \:  \:  \:  \:  \tt{p + q + 2 \sqrt{pq}  =  \frac{ {a}^{2} }{ {b}^{2} } }

 \:  \:  \:  \:  \:  \:  \tt{2 \sqrt{pq}  =  \frac{ {a}^{2} }{ {b}^{2} }  - p - q}.

 \:  \:  \:  \:  \:  \:  \tt{2 \sqrt{pq}  =  \frac{  {a}^{2}  -  {b}^{2} p -  {b}^{2} q}{ {b}^{2} }. }

 \:  \:  \:  \:  \:  \:  \tt{ \sqrt{pq}  = \frac{  {a}^{2}  -  {b}^{2} p -  {b}^{2} q}{ {2b}^{2} }. }

 \\ \tt{Here,you  \: can  \: see \:  \sqrt{pq}   \: is } \\ \tt{ irrational \: no \: however } \\ \tt{  \frac{  {a}^{2}  -  {b}^{2} p -  {b}^{2} q}{ {2b}^{2} } \: is \: rational \: no .}

 \tt{We \:  know \:  that,}

 \tt \large{Irrational    \:  \cancel=  \: Rational.}

\tt{Therefore, Sum \: if\: two \: irrational \: no \: always \: irrational.}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt\huge{ So, it's\:True.}

Similar questions