Math, asked by Anonymous, 3 months ago

Sum of two natural numbers is 8 and the difference of their reciprocals is \bold{\frac{2}{15} } . Find the numbers?? Please thank my answers ❤️❤️❤️​

Answers

Answered by Anonymous
0

Answer:-

\red{\bigstar} The numbers are \large\leadsto\boxed{\rm\purple{3 \: and \: 5}}

• Given:-

  • Sum of two natural numbers is 8.

  • Difference of their reciprocals is 2/15

• To Find:-

  • The numbers

• Solution:-

  • Let the numbers be 'x' and 'y'.

• According to the question:-

\sf x + y = 8 \dashrightarrow\bf\red{[eqn.i]}

\sf \dfrac{1}{x} - \dfrac{1}{y} = \dfrac{2}{15} \dashrightarrow\bf\red{[eqn.ii]}

• Taking eqn[i]:-

\longrightarrow \sf x + y = 8

\longrightarrow \sf x = 8 - y

• Substituting this value of x in eqn[ii]:-

\\ \longrightarrow \sf \dfrac{1}{x} - \dfrac{1}{y} = \dfrac{2}{15} \\

\\ \longrightarrow \sf \dfrac{1}{(8-y)} - \dfrac{1}{y} = \dfrac{2}{15}

• Taking LCM:-

\\ \longrightarrow \sf \dfrac{y - (8-y)}{y(8-y)} = \dfrac{2}{15} \\

\\ \longrightarrow \sf \dfrac{y - 8 + y}{8y-y^2} = \dfrac{2}{15}

\\ \longrightarrow \sf \dfrac{2y - 8}{8y-y^2} = \dfrac{2}{15}

• Cross multiplying:-

\\ \longrightarrow \sf 15 \times(2y-8) = 2 \times (8y-y^2)

\\ \longrightarrow \sf 30y - 120 = 16y - 2y^2

\\ \longrightarrow \sf 30y - 16y - 120 = - 2y^2

\\ \longrightarrow \sf 2y^2 - 14y - 120

\\ \longrightarrow \sf y^2 - 7y - 60

• Splitting the middle term:-

\\ \longrightarrow \sf y^2 - 5y + 12y - 60

\\ \longrightarrow \sf y(y - 5) + 12(y - 5)

\\ \longrightarrow \sf (y-5)(y+12)

Now,

\\ \bigstar \: \sf y - 5 = 0

\\ \longrightarrow \sf y = 5

\\ \bigstar \: \sf y + 12 = 0

\\ \longrightarrow \sf y = -12

Here, y = -12 is not possible.

Hence,

\pink{\bigstar} \bf\green{y = 5}

• Substituting the value of y in eqn[i]:-

\\ \longrightarrow \sf x + y = 8

\\ \longrightarrow \sf x + 5 = 8

\\ \longrightarrow \sf x = 8 - 5

\pink{\bigstar} \bf\green{x = 3}

Therefore, the numbers are 3 and 5.

Answered by MissLuxuRiant
0

Answer :-

\red{\bigstar} The numbers are \large\leadsto\boxed{\rm\purple{3 \: and \: 5}}

• Given :-

  • Sum of two natural numbers is 8.
  • Difference of their reciprocals is 2/15.

• To Find :-

  • The numbers.

• Solution :-

  • Let the numbers be 'x' and 'y'.

• According to the question:-

\sf x + y = 8 \dashrightarrow\bf\red{[eqn.i]}

\sf \dfrac{1}{x} - \dfrac{1}{y} = \dfrac{2}{15} \dashrightarrow\bf\red{[eqn.ii]}

• Taking eqn[i]:-

\longrightarrow \sf x + y = 8

\longrightarrow \sf x = 8 - y

• Substituting this value of x in eqn[ii]:-

\begin{gathered}\\ \longrightarrow \sf \dfrac{1}{x} - \dfrac{1}{y} = \dfrac{2}{15} \\ \end{gathered}

\begin{gathered}\\ \longrightarrow \sf \dfrac{1}{(8-y)} - \dfrac{1}{y} = \dfrac{2}{15}\end{gathered}

• Taking LCM:-

\begin{gathered}\\ \longrightarrow \sf \dfrac{y - (8-y)}{y(8-y)} = \dfrac{2}{15} \\ \end{gathered}

\begin{gathered}\\ \longrightarrow \sf \dfrac{y - 8 + y}{8y-y^2} = \dfrac{2}{15}\end{gathered}

\begin{gathered}\\ \longrightarrow \sf \dfrac{2y - 8}{8y-y^2} = \dfrac{2}{15}\end{gathered}

• Cross multiplying :-

\begin{gathered}\\ \longrightarrow \sf 15 \times(2y-8) = 2 \times (8y-y^2)\end{gathered}

\begin{gathered}\\ \longrightarrow \sf 30y - 120 = 16y - 2y^2\end{gathered}

\begin{gathered}\\ \longrightarrow \sf 30y - 16y - 120 = - 2y^2\end{gathered}

\begin{gathered}\\ \longrightarrow \sf 2y^2 - 14y - 120\end{gathered}

\begin{gathered}\\ \longrightarrow \sf y^2 - 7y - 60\end{gathered}

• Splitting the middle term:-

\begin{gathered}\\ \longrightarrow \sf y^2 - 5y + 12y - 60\end{gathered}

\begin{gathered}\\ \longrightarrow \sf y(y - 5) + 12(y - 5)\end{gathered}

\begin{gathered}\\ \longrightarrow \sf (y-5)(y+12)\end{gathered}

Now,

\begin{gathered}\\ \bigstar \: \sf y - 5 = 0\end{gathered}

\begin{gathered}\\ \longrightarrow \sf y = 5\end{gathered}

\begin{gathered}\\ \bigstar \: \sf y + 12 = 0\end{gathered}

\begin{gathered}\\ \longrightarrow \sf y = -12\end{gathered}

Here, y = -12 is not possible.

Hence,

\pink{\bigstar} \bf\green{y = 5}

• Substituting the value of y in eqn[i]:-

\begin{gathered}\\ \longrightarrow \sf x + y = 8\end{gathered}

\begin{gathered}\\ \longrightarrow \sf x + 5 = 8\end{gathered}

\begin{gathered}\\ \longrightarrow \sf x = 8 - 5\end{gathered}

\pink{\bigstar} \bf\green{x = 3}

Therefore, the numbers are 3 and 5.

Similar questions