Math, asked by sohithsohith098, 11 months ago

sum of values of the polynomialp(x)=x⁴-3x²+2x-1 at x=1and x=2​

Answers

Answered by Rohit18Bhadauria
8

Given:

A polynomial p(x)= x⁴-3x²+2x-1

To Find:

Sum of values of given polynomial at x=1 and x=2

Solution:

To find the values given polynomial, we have to substitute x from 1 and 2 in the expression of polynomial,

For x= 1

\mathrm{p(1)=(1)^{4}-3(1)^{2}+2(1)-1}

\mathrm{p(1)=1-3+2-1}

\mathrm{p(1)=3-4}

\mathrm{p(1)=-1}

For x= 2

\mathrm{p(2)=(2)^{4}-3(2)^{2}+2(2)-1}

\mathrm{p(2)=16-3(4)+4-1}

\mathrm{p(2)=16-12+4-1}

\mathrm{p(2)=20-13}

\mathrm{p(2)=7}

Now,

Required Sum= p(1)+p(2)

Required Sum= -1+7

Required Sum= 6

Hence, the sum of values of the polynomial p(x)=x⁴-3x²+2x-1 at x=1 and x=2​ is 6.

Similar questions