sum r=1 ^ 9 sin^ 2 r pi 18 =5
Answers
Given : ∑sin² rπ/18 = 5 where r is from 1 to 9
To Find : Prove that ∑sin² rπ/18 = 5 where r is from 1 to 9
Solution:
∑sin² rπ/18 = 5 r is from 1 to 9
LHS = ∑sin² rπ/18 r = 1 to 9
= sin² π/18 + sin² 2π/18 + sin² 3π/18 + sin² 4π/18 + sin² 5π/18 + sin² 6π/18 + sin² 7π/18 + sin² 8π/18 + sin² 9π/18
= sin² π/18 + sin² 2π/18 + sin² 3π/18 + sin² 4π/18 + sin² (π/2 - 4π/18) + sin² (π/2 - 3π/18) + sin² (π/2 - 2π/18) + sin² (π/2 - π/18) + sin² π/2
Sin(π /2- x) = Cosx
Sin π/2 = 1
= sin² π/18 + sin² 2π/18 + sin² 3π/18 + sin² 4π/18 +Cos² ( 4π/18) + Cos² ( 3π/18) + Cos² ( 2π/18) + Cos² ( π/18) + 1²
= ( sin² π/18 + Cos² ( π/18) ) + ( sin² 2π/18 + Cos² ( 2π/18) ) + ( sin² 3π/18 + Cos² ( 3π/18) ) + ( sin² 4π/18 + Cos² ( 4π/18) ) + 1
Sin²x + Cos²x =1
= 1 + 1 + 1 + 1 + 1
= 5
= RHS
Hence proved
∑sin² rπ/18 = 5 r is from 1 to 9
Learn More:
If A + B + C = \frac{\pi}{2} and if none of A, B, C is an odd multiple of \frac{\pi}{2}, then prove that
brainly.in/question/6964451
{cos^{2} A . cos^{2} B}
brainly.in/question/6964151
Step-by-step explanation:
Given Sum r=1 ^ 9 sin^ 2 r pi 18 =5
- Now cos 2theta = 1 – 2sin^2 theta
- Or cos 2theta + 2sin^2 theta = 1
- 2 sin^2 theta = 1 – cos 2theta / 2
- ∑ r = 1 to 9 sin^2 r π / 18
- ∑ r = 1 to 9 ½ (1 – cos 2 (rπ / 18)
- ½ ∑ r = 1 to 9 (1 – cos rπ / 9)
- ½ [ ∑ r = 1 to 9 1 - ∑ r = 1 to 9 cos rπ / 9]
- ½ [ 9 – (cos π / 9 + cos 2π / 9 + cos 3π / 9 + + + ++++++cos 9π / 9)
- ½ [ 9 – (cos π / 9 + cos (π / 9 + π / 9) + cos (π/9 + 2 π/9) +--------------cos (π/9 + 8 π/9)
- cos A + cos(A + B) + cos (A + 2B)+---------cos (A + (n – 1)B)
- sin nB/ 2 cos (A + (n -1)B/ 2) / sin B/2 (n = 9, A = π/9, B = π/9) / sin (π/9 x 2) )
- ½ [ 9 – sin (9 π / 9 x 2) cos (π/9 + 8 π/ 9 x 2) / sin (π/9 x 2)
- ½ [ 9 – sin (π/2 ) cos 5 π/9 / sin (π/18)
- ½ [ 9 – 1.sin (π/2 - 5 π/9 ) / sin (π/18)] (sin 90 = 1 , sin (90 – Ɵ) = cos Ɵ, sin (- Ɵ) = - sin Ɵ)
- ½ [9 – (sin - π/18 / sin π/18) ]
- ½ (9 – (- sin π/18) / sin π/18
- ½ (9 + 1)
- ½ (10)
- 5
Reference link will be
https://brainly.in/question/3377161