Math, asked by jeevankishorbabu9985, 2 months ago

sum
 \int \: ( ({a}^{x}))^{2}    - ({b}^{x})^{2} \div a ^{x}  {b}^{x}

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Identities Used :-

 \red{ \boxed{ \sf{ {( {x}^{m}) }^{n}  =  {x}^{mn}  \: }}}

 \red{ \boxed{ \sf{ {x}^{m} \div  {x}^{n}   \:  =  \:  {x}^{m - n} }}}

 \red{ \boxed{ \sf{ \: \displaystyle\int\tt  {a}^{x} dx =  \frac{ {a}^{x} }{loga}  + c}}}

Let's solve the problem now!!!

Given integral is

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {( {a}^{x} )}^{2}  -  {( {b}^{x} )}^{2} }{ {a}^{x}  {b}^{x} } \: dx

Can be rewritten as

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {( {a}^{2x} )}  -  {( {b}^{2x} )} }{ {a}^{x}  {b}^{x} } \: dx

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{ {a}^{2x} }{ {a}^{x} {b}^{x}  } dx - \displaystyle\int\tt \dfrac{ {b}^{2x} }{ {a}^{x}  {b}^{x} } dx

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{ {a}^{2x - x} }{{b}^{x}  } dx - \displaystyle\int\tt \dfrac{ {b}^{2x - x} }{ {a}^{x}} dx

 \rm \:  \:  =  \: \displaystyle\int\tt \dfrac{ {a}^{x} }{{b}^{x}  } dx - \displaystyle\int\tt \dfrac{ {b}^{x} }{ {a}^{x}} dx

 \rm \:  \:  =  \: \displaystyle\int\tt  {\bigg(\dfrac{a}{b} \bigg) }^{x}dx - \displaystyle\int\tt {\bigg(\dfrac{b}{a} \bigg) }^{x}dx

 \rm \:  \:  =  \: \dfrac{{\bigg(\dfrac{a}{b} \bigg) }^{x}}{log{\bigg(\dfrac{a}{b} \bigg) }}  - \dfrac{{\bigg(\dfrac{b}{a} \bigg) }^{x}}{log{\bigg(\dfrac{b}{a} \bigg) }}  + c

Additional Information :-

 \red{ \boxed{ \sf{ \displaystyle\int\tt kdx\: = x + c }}}

 \red{ \boxed{ \sf{ \displaystyle\int\tt  {e}^{x} dx\: =  {e}^{x}  + c }}}

 \red{ \boxed{ \sf{ \displaystyle\int\tt  \frac{1}{x}dx \:  = logx + c}}}

 \red{ \boxed{ \sf{\displaystyle\int\tt  \frac{1}{ \sqrt{x} }  dx\: = 2 \sqrt{x} + c  }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt k \: f(x) \: dx \:  = k \: \displaystyle\int\tt f(x) \: dx}}}

Answered by Anonymous
3

Final answer:

\bf  \:  \: \dfrac{{\bigg(\dfrac{a}{b} \bigg) }^{x}}{log{\bigg(\dfrac{a}{b} \bigg) }} - \dfrac{{\bigg(\dfrac{b}{a} \bigg) }^{x}}{log{\bigg(\dfrac{b}{a} \bigg) }} + c

Step-by-step explanation:

 \bf  \:\displaystyle\int\tt \dfrac{ {( {a}^{x} )}^{2} - {( {b}^{x} )}^{2} }{ {a}^{x} {b}^{x} } \: dx

\bf  \: \: → \: \displaystyle\int\tt \dfrac{ {( {a}^{2x} )} - {( {b}^{2x} )} }{ {a}^{x} {b}^{x} } \: dx

\bf  \: \: → \: \displaystyle\int\tt \dfrac{ {a}^{2x} }{ {a}^{x} {b}^{x} } dx - \displaystyle\int\tt \dfrac{ {b}^{2x} }{ {a}^{x} {b}^{x} } dx

\bf  \: \: → \: \displaystyle\int\tt \dfrac{ {a}^{2x - x} }{{b}^{x} } dx - \displaystyle\int\tt \dfrac{ {b}^{2x - x} }{ {a}^{x}} dx

\bf \: \: → \: \displaystyle\int\tt \dfrac{ {a}^{x} }{{b}^{x} } dx - \displaystyle\int\tt \dfrac{ {b}^{x} }{ {a}^{x}} dx

\bf  \: \: → \: \displaystyle\int\tt {\bigg(\dfrac{a}{b} \bigg) }^{x}dx - \displaystyle\int\tt {\bigg(\dfrac{b}{a} \bigg) }^{x}dx

\bf  \: \: → \: \dfrac{{\bigg(\dfrac{a}{b} \bigg) }^{x}}{log{\bigg(\dfrac{a}{b} \bigg) }} - \dfrac{{\bigg(\dfrac{b}{a} \bigg) }^{x}}{log{\bigg(\dfrac{b}{a} \bigg) }} + c

Similar questions