Math, asked by aryan021212, 19 days ago

Sum to n terms of the given series

 \frac{1}{1 +  {1}^{2} +  {1}^{4}  } +  \frac{2}{1 +  {2}^{2}  +  {2}^{4} } +  \frac{3}{1 +  {3}^{2}  +  {3}^{4} }  +  -  -  -

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given series is

\rm \: \dfrac{1}{1 +  {1}^{2}  +  {1}^{4} }  + \dfrac{2}{1 +  {2}^{2}  +  {2}^{4} }  + \dfrac{3}{1 +  {3}^{2}  +  {3}^{4} }  +  -  -  -

Now, the rᵗʰ term of series is given by

\rm \: T_r = \dfrac{r}{1 +  {r}^{2} +  {r}^{4} }

can be rewritten as

\rm \:  =  \: \dfrac{r}{ {r}^{4}  +  {r}^{2} + 1 }

\rm \:  =  \: \dfrac{r}{ {r}^{4}  +  {r}^{2} +  {r}^{2}  + 1  -  {r}^{2} }

\rm \:  =  \: \dfrac{r}{ {r}^{4} +  2{r}^{2}  + 1  -  {r}^{2} }

\rm \:  =  \: \dfrac{r}{ {( {r}^{2} + 1)}^{2} -  {r}^{2} }

\rm \:  =  \: \dfrac{r}{( {r}^{2} + 1 + r)( {r}^{2} + 1 - r)}

\rm \:  =  \:\dfrac{1}{2} \bigg( \dfrac{2r}{( {r}^{2} + 1 + r)( {r}^{2} + 1 - r)}\bigg)

\rm \:  =  \:\dfrac{1}{2} \bigg( \dfrac{r + r}{( {r}^{2} + 1 + r)( {r}^{2} + 1 - r)}\bigg)

\rm \:  =  \:\dfrac{1}{2} \bigg( \dfrac{r + r + 1 - 1 +  {r}^{2}  -  {r}^{2} }{( {r}^{2} + 1 + r)( {r}^{2} + 1 - r)}\bigg)

\rm \:  =  \:\dfrac{1}{2} \bigg( \dfrac{( {r}^{2}  + r + 1) - ( {r}^{2} + 1 - r)}{( {r}^{2} + 1 + r)( {r}^{2} + 1 - r)}\bigg)

\rm \:  =  \: \dfrac{1}{2} \bigg(\dfrac{1}{ {r}^{2}  + 1 - r}  - \dfrac{1}{ {r}^{2}  + 1 + r}  \bigg)

So,

\rm\implies \:\rm T_r\:  =  \: \dfrac{1}{2} \bigg(\dfrac{1}{ {r}^{2}  + 1 - r}  - \dfrac{1}{ {r}^{2}  + 1 + r}  \bigg)

On substituting r = 1, 2, 3, ----, n, we get

\rm T_1\:  =  \: \dfrac{1}{2} \bigg(\dfrac{1}{ 1}  - \dfrac{1}{ 3}  \bigg)

\rm T_2\:  =  \: \dfrac{1}{2} \bigg(\dfrac{1}{3}  - \dfrac{1}{7}  \bigg)

\rm T_3\:  =  \: \dfrac{1}{2} \bigg(\dfrac{1}{7}  - \dfrac{1}{13}  \bigg)

.

.

.

.

\rm T_n\:  =  \: \dfrac{1}{2} \bigg(\dfrac{1}{ {n}^{2}  + 1 - n}  - \dfrac{1}{ {n}^{2}  + 1 + n}  \bigg)

Now, We know, Sum of n terms is

\rm \: S_n = T_1 + T_2 + T_3 +  -  -  -  + T_n

\rm \: S_n = \dfrac{1}{2} \bigg(\dfrac{1}{ 1}  - \dfrac{1}{ 3}  \bigg) + \dfrac{1}{2} \bigg(\dfrac{1}{3}  - \dfrac{1}{7}  \bigg) + \dfrac{1}{2} \bigg(\dfrac{1}{7}  - \dfrac{1}{ 13}  \bigg) + -  -   + \dfrac{1}{2} \bigg(\dfrac{1}{ {n}^{2}  + 1 - n}  - \dfrac{1}{ {n}^{2}  + 1 + n}  \bigg)

\rm \: S_n = \dfrac{1}{2} \bigg(1 - \dfrac{1}{ {n}^{2}  + 1 + n}  \bigg)

\rm \: S_n = \dfrac{1}{2} \bigg( \dfrac{ {n}^{2}  + 1 + n - 1}{{n}^{2}  + 1 + n}  \bigg)

\rm \: S_n = \dfrac{1}{2} \bigg( \dfrac{ {n}^{2}  + n}{{n}^{2}  + 1 + n}  \bigg)

Hence,

\rm\implies \:\rm \: \boxed{\tt{  \: S_n = \dfrac{1}{2} \bigg( \dfrac{n(n + 1)}{{n}^{2} + n + 1}  \bigg)}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ 1 + 2 + 3 +  -  -  -  + n =  \frac{n(n + 1)}{2}}} \\

\boxed{\tt{ {1}^{2} +  {2}^{2}  + {3}^{2}  +  -  -  -  + {n}^{2}  =  \frac{n(n + 1)(2n + 1)}{6}}} \\

\boxed{\tt{ {1}^{3}+{2}^{3}+ {3}^{3}  +  -  -  -  + {n}^{3}  =   {\bigg[\dfrac{n(n + 1)}{2} \bigg]}^{2} }} \\

Answered by XxitzZBrainlyStarxX
7

Question:-

Sum to n terms of the given series

\sf \large \frac{1}{1 + {1}^{2} + {1}^{4} } + \frac{2}{1 + {2}^{2} + {2}^{4} } + \frac{3}{1 + {3}^{2} + {3}^{4} } + ...

Given:-

\sf \large \frac{1}{1 + {1}^{2} + {1}^{4} } + \frac{2}{1 + {2}^{2} + {2}^{4} } + \frac{3}{1 + {3}^{2} + {3}^{4} } + ...

Solution:-

Now,

\sf \large \: T_r =  \frac{r}{ 1 + r {}^{2}  + r {}^{4} }  =  \frac{r}{(1 + r {}^{4}) + r {}^{2}  }  =  \frac{r}{(1 + r {}^{2} ) {}^{2}  - r {}^{2} }

 \sf \large =  \frac{r}{(r {}^{2}  + r + 1)(r {}^{2} - r + 1) }

\sf \large =  \frac{1}{2}  \times  \frac{(r {}^{2}  + r + 1) -  (r {}^{2} - r + 1) }{(r {}^{2} + r + 1)(r {}^{2} - r +1)  }

\sf \large =  \frac{1}{2}  \bigg \{ \frac{1}{r {}^{2}  - r + 1}  -  \frac{1}{r {}^{2}  + r + 1}   \bigg \}

 \sf \large There, Sum  \: to \:  n \:  terms,   \sf \large \: S_n = \sf{ \sum \limits_{r = 1}^{n} } \:  T_r

 \sf \large  =\sf{ \sum \limits_{r = 1}^{n}} \:  \frac{1}{2} \bigg ( \frac{1}{r {}^{2}  - r + 1}  -  \frac{1}{r {}^{2} + r + 1 }  \bigg)

 \sf \large =  \frac{1}{2}  \bigg \{( \frac{1}{1}  -  {{ \cancel{\frac{1}{3} }}}) + ({{ \cancel{ \frac{1}{3}}}}  -  {{ \cancel{\frac{1}{7}}}} ) + ( {{ \cancel{\frac{1}{7}  }}}-  \frac{1}{13} ) + ...( \frac{1}{n {}^{2} - n + 1 }  -  \frac{1}{n {}^{2}  + n + 1} ) \bigg \}

 \sf \large =  \frac{1}{2}  \bigg \{1 -  \frac{1}{n {}^{2} + n + 1 }  \bigg \}

  \sf \large =  \frac{1}{2}  \bigg( \frac{n {}^{2} + n }{n {}^{2}  + n + 1}  \bigg )

Answer:-

{ \boxed{ \sf \large \red{\sf \large \:  S_n =  \frac{1}{2}  \bigg( \frac{n {}^{2} + n }{n {}^{2}  + n + 1}  \bigg )}}}

Hope you have satisfied.

Similar questions