Math, asked by bsagu1980, 21 days ago

Sum to n terms the series :-
(i) 7 + 77 + 777 + ....
(ii) 0.7 + 0.77 + 0.777 + ....

Answers

Answered by sandipsagare8588
6

Sum to n terms the series :-

Attachments:
Answered by Anonymous
161

Concept

The above question is based on the concept of Sum of 'n' terms of a Geometric Series. Before starting with solution have a look on the derivation of the basic formula for the Geometric Sum so as to compare it with the given series.

Derivation

 \sf Consider \: the \: series :  \red{ a + ar + a {r}^{2}  + .... + a {r}^{n - 1} }

Let Sn denote the sum of 'n' terms of this series. Write the series and subtract from it, term by term, the product of 'r' and the series as shown :-

 \sf  \red{S_n}  = a + ar + a {r}^{2}  + .... + a {r}^{n - 1}

 \sf r. S_n = ar + a {r}^{2}  + .... + a {r}^{n - 1} + a {r}^{n - 2} + a {r}^{n}

Subtracting, we'll get

 \sf \: S_n - r. S_n = a  -  a {r}^{n} \implies S_n(1 - r)

 \sf  S_n  =  \dfrac{a(1 -  {r}^{n})}{1 - r}  \quad \: (  \red{r  \cancel{=} 1})

 \rule{190pt}{1pt}

Let's proceed with calculation !!

 \sf  \red{1)}  \: 7 + 77 + 777 + ...

 \sf \: S_n = 7 + 77 + 777 + .... to  \: \red{n} \: terms.

 \sf = 7[1 + 11 + 111 + ...to \: \red{n} \: terms]

 \sf =\dfrac{7}{9}[9 + 99 + 999 + ... \: to \: n \: terms]

 \sf = \dfrac{7}{9}[(10 - 1) + (100 - 1) + (1000 - 1) + ... \: to \: n \: terms]

 \sf = \dfrac{7}{9} [(10 +   {10}^{2} +  {10}^{3} + ... \: to \: n \: terms)- (1 + 1 + 1 + ... \: to \: n \: terms)]

 \sf = \dfrac{7}{9} \huge{[} \footnotesize \sf\dfrac{10. ({10}^{n} - 10)}{81} \huge{ ]}

: \implies \underline{\boxed{ \sf\dfrac{7( {10}^{n + 1} -  10)}{81}  -  \dfrac{7}{9}n}}

 \sf  \red{2)}  \: 0.7 + 0.77 + 0.777 + ...

 \sf  S_n =  \: 0.7 + 0.77 + 0.777 + ...  to  \: \red n \: terms

 \sf = 7[0.1 + 0.11 + 0.111 + ...to \: \red{n} \: terms]

 \sf = \dfrac{7}{9}[0.9 + 0.99 + 0.999 + ... \: to \: n \: terms]

 \sf =\dfrac{7}{9}[(1 - 0.1) + (1 - 0.01) + (1- 0.001) + ... \: to \: n \: terms]

 \sf = \dfrac{7}{9} \huge{[} \footnotesize \sf \: n -  \dfrac{0.1(1 -  {0.1}^{n})}{1 - 0.1} \huge{ ]}

\sf:\implies\underline{ \boxed{ \dfrac{7}{9} \huge{ [ }\footnotesize \sf \: n -  \dfrac{1}{9} (1 -  \dfrac{1}{ {10}^{n}}) \huge{]}}}

 \underline{\rule{190pt}{2pt}}

Note

➠ Refer to the derivation first before starting with the solution. We can write and use the above formula in the form of

 \sf  S_n  =  \dfrac{a({r}^{n}\: -\: 1)}{r - 1}  \quad \: (  \red{r  \cancel{=} 1})

Similar questions