Math, asked by josephinethangjam, 3 months ago

Sums of Ap 40,36,32,28,....to 15 terms​

Answers

Answered by MagicalBeast
2

Given :

Ap : 40, 36 , 32

To find :

Sum of 15 terms

Formula used :

\sf \implies \:  S_n \:=\: \:  \bigg( \:  \dfrac{n}{2}  \:  \bigg) \bigg( \: 2a \:  + \:  ( n- 1) d \: \bigg)

Here,

  • Sₙ = sum of n terms
  • a = First term
  • n = Number of terms
  • d = common difference

SOLUTION :

First of all we need to find common difference,

d = Second term - First term

d = 36 - 40

d = -4

\sf \implies \:  S_{15} \:=\: \:  \bigg( \:  \dfrac{15}{2}  \:  \bigg) \bigg( \: 2 \times 40 \:  + \:  ( 15- 1) ( - 4)\: \bigg) \\  \\ \sf \implies \:  S_{15} \:=\: \: \bigg( \:  \dfrac{15}{2}  \:  \bigg)\bigg( \: 80\:  + \:  ( 14) ( - 4)\: \bigg) \\  \\ \sf \implies \:  S_{15} \:=\: \: \bigg( \:  \dfrac{15}{2}  \:  \bigg)\bigg( \: 80\:   - 56\: \bigg) \\  \\ \sf \implies \:  S_{15} \:=\: \: \bigg( \:  \dfrac{15}{2}  \:  \bigg)\bigg( \:24\bigg) \\  \\ \sf \implies \:  S_{15} \:=\: \dfrac{360}{2}  \\  \\ \sf \implies \:  S_{15} \:=\: \bold{180}

ANSWER :

Sum of 15 terms = 180

Similar questions